-
公开(公告)号:CN100437544C
公开(公告)日:2008-11-26
申请号:CN200380109194.9
申请日:2003-12-31
Applicant: 微软公司
IPC: G06F15/16
Abstract: 本发明涉及一种用于过滤消息的系统——该系统包括一种子过滤器,它具有与其相关联的假肯定率和假否定率。还提供用于过滤消息的新过滤器,该新过滤器是根据种子过滤器的假肯定率和假否定率来评估的,使用用于确定种子过滤器假肯定率和假否定率的数据,来根据阈值确定新过滤器的新假肯定率和新假否定率。如果对该新过滤器存在阈值,使得新假肯定率和新假否定率被一同认为优于种子过滤器的假肯定和假否定率,则使用该新过滤器。
-
公开(公告)号:CN1742266A
公开(公告)日:2006-03-01
申请号:CN200380109194.9
申请日:2003-12-31
Applicant: 微软公司
IPC: G06F15/16
CPC classification number: G06Q10/107 , H04L51/12
Abstract: 本发明涉及一种用于过滤消息的系统——该系统包括一种子过滤器,它具有与其相关联的假肯定率和假否定率。还提供用于过滤消息的新过滤器,该新过滤器是根据种子过滤器的假肯定率和假否定率来评估的,使用用于确定种子过滤器假肯定率和假否定率的数据,来根据阈值确定新过滤器的新假肯定率和新假否定率。如果对该新过滤器存在阈值,使得新假肯定率和新假否定率被一同认为优于种子过滤器的假肯定和假否定率,则使用该新过滤器。
-
公开(公告)号:CN100472484C
公开(公告)日:2009-03-25
申请号:CN200480003769.3
申请日:2004-02-25
Applicant: 微软公司
IPC: G06F13/00
CPC classification number: H04L51/12 , G06Q10/107
Abstract: 本发明提供了便于就在服务器和/或基于客户机的体系结构中防止垃圾邮件而对项目进行分类的反馈循环系统和方法。本发明利用机器学习方法,将其应用于垃圾邮件过滤器,尤其是随机地对传入的电子邮件消息进行采样,从而获得合法和垃圾/兜售信息邮件两者的例子来生成训练数据集。被标识为垃圾邮件战士的用户被要求对其传入电子邮件消息的选择分别是合法邮件还是垃圾邮件进行表决。数据库存储每个邮件和表决事务的属性,诸如用户信息、消息属性和内容摘要以及每个消息的轮询结果等,以生成用于机器学习系统的训练数据。该机器学习系统便于创建改进的垃圾邮件过滤器,它被训练成能识别合法邮件和垃圾邮件两者,并能区分这两者。
-
公开(公告)号:CN1809821A
公开(公告)日:2006-07-26
申请号:CN200480003769.3
申请日:2004-02-25
Applicant: 微软公司
IPC: G06F13/00
CPC classification number: H04L51/12 , G06Q10/107
Abstract: 本发明提供了便于就在服务器和/或基于客户机的体系结构中防止垃圾邮件而对项目进行分类的反馈循环系统和方法。本发明利用机器学习方法,将其应用于垃圾邮件过滤器,尤其是随机地对传入的电子邮件消息进行采样,从而获得合法和垃圾/兜售信息邮件两者的例子来生成训练数据集。被标识为垃圾邮件战士的用户被要求对其传入电子邮件消息的选择分别是合法邮件还是垃圾邮件进行表决。数据库存储每个邮件和表决事务的属性,诸如用户信息、消息属性和内容摘要以及每个消息的轮询结果等,以生成用于机器学习系统的训练数据。该机器学习系统便于创建改进的垃圾邮件过滤器,它被训练成能识别合法邮件和垃圾邮件两者,并能区分这两者。
-
-
-