-
公开(公告)号:CN1716293B
公开(公告)日:2012-04-18
申请号:CN200510082282.5
申请日:2005-06-29
Applicant: 微软公司
CPC classification number: G06Q10/107 , H04L51/12
Abstract: 本发明提供一种便于几乎实时或实时地增量更新垃圾邮件过滤器的独特系统与方法。增量更新可部分地通过差异学习来生成。差异学习涉及基于新数据来训练一新垃圾邮件过滤器,然后寻找该新垃圾邮件过滤器和现有垃圾邮件过滤器之间的差异。差异可至少部分地通过比较参数变化的绝对值(两个过滤器间特征的权重变化)来确定。也可使用诸如参数频率等的其他因素。此外,关于特定特征或消息的可用更新可使用一个或多个查找表或数据库来查找。例如,当增量和/或特征专用更新可用时,它们可由诸如客户机下载。增量更新可被自动提供,或可依照客户机或服务器的偏好根据请求来提供。
-
公开(公告)号:CN1716293A
公开(公告)日:2006-01-04
申请号:CN200510082282.5
申请日:2005-06-29
Applicant: 微软公司
CPC classification number: G06Q10/107 , H04L51/12
Abstract: 本发明提供一种便于几乎实时或实时地增量更新垃圾邮件过滤器的独特系统与方法。增量更新可部分地通过差异学习来生成。差异学习涉及基于新数据来训练一新垃圾邮件过滤器,然后寻找该新垃圾邮件过滤器和现有垃圾邮件过滤器之间的差异。差异可至少部分地通过比较参数变化的绝对值(两个过滤器间特征的权重变化)来确定。也可使用诸如参数频率等的其他因素。此外,关于特定特征或消息的可用更新可使用一个或多个查找表或数据库来查找。例如,当增量和/或特征专用更新可用时,它们可由诸如客户机下载。增量更新可被自动提供,或可依照客户机或服务器的偏好根据请求来提供。
-