-
公开(公告)号:CN115640305B
公开(公告)日:2023-09-29
申请号:CN202211651581.6
申请日:2022-12-22
Applicant: 暨南大学
Abstract: 本发明公开一种基于区块链的公平可信联邦学习方法,包括:模型需求者在区块链上发布训练任务及交易合约传递任务,客户端对全局模型进行训练,生成局部模型参数,将局部模型参数加密传输给区块链上的对应节点;对应节点传播并验证加密后的局部模型参数,对应节点将验证通过后的局部模型参数进行聚合,根据聚合结果更新全局模型并基于更新结果生成新区块,并将新区块进行广播;所有节点对新区块进行验证并达成共识;激励合约基于共识结果,计算客户端的贡献并生成最新全局模型;重复S2‑S6直到满足训练结束条件,得到优化模型。交易合约将优化全局模型传给模型需求者。
-
公开(公告)号:CN115640305A
公开(公告)日:2023-01-24
申请号:CN202211651581.6
申请日:2022-12-22
Applicant: 暨南大学
Abstract: 本发明公开一种基于区块链的公平可信联邦学习方法,包括:模型需求者在区块链上发布训练任务及交易合约传递任务,客户端对全局模型进行训练,生成局部模型参数,将局部模型参数加密传输给区块链上的对应矿工;对应矿工传播并验证加密后的局部模型参数,对应矿工将验证通过后的局部模型参数进行聚合,根据聚合结果更新全局模型并基于更新结果生成新区块,并将新区块进行广播;所有矿工对新区块进行验证并达成共识;激励合约基于共识结果,计算客户端的贡献并生成最新全局模型;重复S2‑S6直到满足训练结束条件,得到优化模型。交易合约将优化全局模型传给模型需求者。
-
公开(公告)号:CN116597498B
公开(公告)日:2023-10-24
申请号:CN202310826138.6
申请日:2023-07-07
Applicant: 暨南大学
IPC: G06V40/16 , G06N3/0985 , G06V10/82 , G06F21/60 , G06F21/64
Abstract: 本发明公开了一种基于区块链和联邦学习的公平人脸属性分类方法,属于计算机视觉技术领域,包括:模型需求者发布联邦学习任务,区块链交易合约向客户端传递联邦学习任务;客户端接收到联邦学习任务后,对局部模型进行训练,并将局部模型参数加密发送给区块链节点;区块链节点验证局部模型参数的公平性,生成客户端信誉,并将验证成功的局部模型参数进行加密,和客户端信誉打包生成新区块;区块链交易合约将新区块广播给其他区块链节点进行验证,中央服务器收集验证成功的局部模型参数并进行聚合,获得全局模型;模型需求者基于全局模型进行人脸属性识别分类。本发明实现了全局模型属性公平的增强,同时维持了人脸属性分类理想的准确率。
-
公开(公告)号:CN116597498A
公开(公告)日:2023-08-15
申请号:CN202310826138.6
申请日:2023-07-07
Applicant: 暨南大学
IPC: G06V40/16 , G06N3/0985 , G06V10/82 , G06F21/60 , G06F21/64
Abstract: 本发明公开了一种基于区块链和联邦学习的公平人脸属性分类方法,属于计算机视觉技术领域,包括:模型需求者发布联邦学习任务,区块链交易合约向客户端传递联邦学习任务;客户端接收到联邦学习任务后,对局部模型进行训练,并将局部模型参数加密发送给区块链节点;区块链节点验证局部模型参数的公平性,生成客户端信誉,并将验证成功的局部模型参数进行加密,和客户端信誉打包生成新区块;区块链交易合约将新区块广播给其他区块链节点进行验证,中央服务器收集验证成功的局部模型参数并进行聚合,获得全局模型;模型需求者基于全局模型进行人脸属性识别分类。本发明实现了全局模型属性公平的增强,同时维持了人脸属性分类理想的准确率。
-
-
-