-
公开(公告)号:CN119646650A
公开(公告)日:2025-03-18
申请号:CN202411669851.5
申请日:2024-11-21
Applicant: 暨南大学
IPC: G06F18/2415 , G06F18/214 , G06F18/25 , G06N7/01 , G06F17/16
Abstract: 本发明提出了基于Dirichlet分布的废旧零部件状态映射模型构建方法,针对废旧零部件质量评估的不确定性问题,构建一种基于Dirichlet分布的损伤‑质量状态映射模型(DBMS),该模型通过对废旧零部件失效行为分析确定主要失效特征,采用多项分布对零部件损伤量数据进行数学抽象,选取Dirichlet分布作为先验概率分布,结合贝叶斯公式更新得到后验分布参数,从而获得损伤量数据映射到不同质量等级的后验概率期望值。进一步,引入D‑S证据理论融合损伤信息,实现对废旧零部件质量状况的综合评估。为了验证模型的可行性和有效性,以废旧涡轮蜗杆为案例研究对象,并与现有文献方法进行对比,实验结果显示,该模型在预测精度和泛化能力上具有优势。
-
公开(公告)号:CN118535875A
公开(公告)日:2024-08-23
申请号:CN202410657000.2
申请日:2024-05-24
Applicant: 暨南大学
Abstract: 本发明公开了一种工序随机失效的退役机电产品拆解方法、装置及设备,所述方法包括:利用贝叶斯网络对退役机电产品拆解过程中的各工序间失效因果关联进行分析,确定失效状态转移的概率;根据退役机电产品拆解过程中的失效样本数据,估计各拆解工序随机失效条件概率;结合遗传算法,根据工序的失效条件概率优化拆解工艺路线,搜索退役机电产品拆解的全局近似最优解;根据设计好的失效修复策略,针对已发生失效的工序采取相应修复操作,确保退役机电产品拆解过程中拆解序列的连续性。本发明能够深入探究拆解工序失效行为机理,并基于拆解工序之间的失效因果关联决策出全局最优拆解工艺路线。
-
公开(公告)号:CN118535875B
公开(公告)日:2025-03-28
申请号:CN202410657000.2
申请日:2024-05-24
Applicant: 暨南大学
Abstract: 本发明公开了一种工序随机失效的退役机电产品拆解方法、装置及设备,所述方法包括:利用贝叶斯网络对退役机电产品拆解过程中的各工序间失效因果关联进行分析,确定失效状态转移的概率;根据退役机电产品拆解过程中的失效样本数据,估计各拆解工序随机失效条件概率;结合遗传算法,根据工序的失效条件概率优化拆解工艺路线,搜索退役机电产品拆解的全局近似最优解;根据设计好的失效修复策略,针对已发生失效的工序采取相应修复操作,确保退役机电产品拆解过程中拆解序列的连续性。本发明能够深入探究拆解工序失效行为机理,并基于拆解工序之间的失效因果关联决策出全局最优拆解工艺路线。
-
公开(公告)号:CN118607373A
公开(公告)日:2024-09-06
申请号:CN202410759265.3
申请日:2024-06-13
Applicant: 暨南大学
IPC: G06F30/27 , G06N7/01 , G06N7/02 , G06N5/04 , G06F119/02
Abstract: 本发明公开了一种退役机电产品拆解工序的失效风险评估方法、装置及设备,所述方法包括:从退役机电产品的零部件失效层面出发,确定退役机电产品的拆解工序的失效行为表现,并通过引入模糊推理方法,处理多维失效变量进而精确描述退役机电产品的单个拆解工序的失效状态;利用改进离散萤火虫算法优化用于反映退役机电产品的失效拆解工序间因果关系的贝叶斯网络拓扑结构;使用期望最大参数估计方法来估计贝叶斯网络拓扑结构每个节点的贝叶斯网络参数,以估计退役机电产品的各个拆解工序的失效条件概率。本发明能够准确识别退役机电产品拆解过程中潜在的拆解工序的关联失效风险。
-
公开(公告)号:CN118607373B
公开(公告)日:2025-03-28
申请号:CN202410759265.3
申请日:2024-06-13
Applicant: 暨南大学
IPC: G06F30/27 , G06N7/01 , G06N7/02 , G06N5/04 , G06F119/02
Abstract: 本发明公开了一种退役机电产品拆解工序的失效风险评估方法、装置及设备,所述方法包括:从退役机电产品的零部件失效层面出发,确定退役机电产品的拆解工序的失效行为表现,并通过引入模糊推理方法,处理多维失效变量进而精确描述退役机电产品的单个拆解工序的失效状态;利用改进离散萤火虫算法优化用于反映退役机电产品的失效拆解工序间因果关系的贝叶斯网络拓扑结构;使用期望最大参数估计方法来估计贝叶斯网络拓扑结构每个节点的贝叶斯网络参数,以估计退役机电产品的各个拆解工序的失效条件概率。本发明能够准确识别退役机电产品拆解过程中潜在的拆解工序的关联失效风险。
-
-
-
-