基于反馈校正的GRU神经网络机器人柔性关节补偿控制方法

    公开(公告)号:CN115319755A

    公开(公告)日:2022-11-11

    申请号:CN202211137827.8

    申请日:2022-09-19

    Abstract: 本发明公开一种基于反馈校正的GRU神经网络机器人柔性关节补偿控制方法,针对负载转矩传感器的情况下,通过反映负载大小变化的电机驱动电流与关节扭转角之间的特性,描述关节在不同负载下的迟滞特性,在GRU神经网络的基础上引入反馈结构,利用模型输出值与期望输出值之间的误差组成补偿量,反馈给GRU神经网络模型,用于校正GRU神经网络模型的输出值,以提高关节的GRU神经网络模型精度。柔性关节迟滞模型预测随负载变化的扭转角,作为补偿量,修改关节的角度设定值,从关节输入端,间接实现对关节迟滞特性造成误差的有效补偿。本发明是一种低成本补偿控制方法,有利于低成本高精度轻型工业机器人的高端智能制造中的大量普及。

    GRU的柔性关节迟滞特性建模与补偿控制方法

    公开(公告)号:CN116100554A

    公开(公告)日:2023-05-12

    申请号:CN202310244604.X

    申请日:2023-03-14

    Abstract: 本发明公开一种GRU的柔性关节迟滞特性建模与补偿控制方法,对于未配置负载转矩传感器的低成本轻型工业机器人柔性关节,采用电机驱动电流‑电机端扭转角间接描述关节迟滞特性,将关节迟滞特性中正逆程特有的特征融入GRU神经网络迟滞模型中,利用基于卡尔曼滤波的电流增量,提取正程和逆程的特征,描述电流‑电机端扭转角迟滞特性中正逆程所表现出的多值特性,并将模型的历史值作为输入模型,构造具有记忆能力和非线性映射能力的动态GRU神经网络迟滞模型,获得电机端扭转角。基于迟滞模型,对电机端的控制角度设定值的有效补偿控制,实现关节角度的高精度传递,减小关节结构及负载对关节性能的影响。

    基于反馈校正的GRU神经网络机器人柔性关节补偿控制方法

    公开(公告)号:CN115319755B

    公开(公告)日:2025-05-16

    申请号:CN202211137827.8

    申请日:2022-09-19

    Abstract: 本发明公开一种基于反馈校正的GRU神经网络机器人柔性关节补偿控制方法,针对负载转矩传感器的情况下,通过反映负载大小变化的电机驱动电流与关节扭转角之间的特性,描述关节在不同负载下的迟滞特性,在GRU神经网络的基础上引入反馈结构,利用模型输出值与期望输出值之间的误差组成补偿量,反馈给GRU神经网络模型,用于校正GRU神经网络模型的输出值,以提高关节的GRU神经网络模型精度。柔性关节迟滞模型预测随负载变化的扭转角,作为补偿量,修改关节的角度设定值,从关节输入端,间接实现对关节迟滞特性造成误差的有效补偿。本发明是一种低成本补偿控制方法,有利于低成本高精度轻型工业机器人的高端智能制造中的大量普及。

Patent Agency Ranking