基于改进型胶囊网络的语音数据分类方法

    公开(公告)号:CN109410917A

    公开(公告)日:2019-03-01

    申请号:CN201811123791.1

    申请日:2018-09-26

    Abstract: 本发明公开了一种基于改进型胶囊网络的语音数据分类方法,首先在训练阶段,构造胶囊网络的编码器,对初始语音音素数据进行编码得到初级胶囊;构造胶囊网络的动态路由结构,将初级胶囊中的信息传递给高级胶囊;以每个高级胶囊的长度的softmax激活值表征初始语音音素数据属于对应类别的概率;然后构造胶囊网络的解码器,将真实音素符号对应的高级胶囊进行解码重构;基于总损失函数对胶囊网络的参数进行优化;在测试阶段,将初始语音音素数据输入胶囊网络的编码器中,判断待测试数据的所属类别。本发明实现对语音音素的时序信号所对应的音速符号的精准识别,解决按照理论知识直接提取的特征准确度低、语音数据分类效果差以及过拟合的技术问题。

    基于一致性路由网络的语音音素识别方法

    公开(公告)号:CN109741733B

    公开(公告)日:2023-01-31

    申请号:CN201910035513.9

    申请日:2019-01-15

    Abstract: 本发明公开一种基于一致性路由网络的语音音素识别方法,首先在训练阶段,构造一致性路由前馈网络编码器,对向量初始语音音素数据进行矩阵运算和二维卷积得到低阶状态向量;构造一致性路由网络的一致性路由结构,通过一致性路由系数加权低阶状态向量,将其中的信息传递给高阶状态向量;以每个高阶状态向量的长度的softmax激活值在所有高阶状态向量softmax激活值中的占比来表示判定为该标签的概率;然后构造一致性路由网络的重构解码器,将真实标签对应的高阶状态向量进行解码重构;基于总损失函数对一致性路由网络的参数求得梯度公式进行优化更新;在测试阶段,将初始语音音素数据输入一致性路由网络的前馈编码器中,判断待测试数据的所属类别。

    一种肌电信号特征提取方法

    公开(公告)号:CN109308471B

    公开(公告)日:2022-07-15

    申请号:CN201811148444.4

    申请日:2018-09-29

    Abstract: 本发明公开了一种肌电信号特征提取方法,首先对肌电信号作傅里叶变换取傅里叶系数,选取预设频段的傅里叶系数并归一化;构建堆叠自动编码器,设置每一层网络参数进行训练更新参数;构建堆叠的受限玻尔兹曼机,设置每一层网络参数进行训练更新参数;在预训练自动编码器和受限玻尔兹曼机完成后,将两部分预训练的参数前后连接起来,即自动编码器的输出为受限玻尔兹曼机的输入,形成一个贯通的网络,实现肌电信号特征提取,解决现有肌电信号提取方法时面临的时域特征变化大、频域特征提取不充分的问题。

    基于改进型胶囊网络的语音数据分类方法

    公开(公告)号:CN109410917B

    公开(公告)日:2021-11-16

    申请号:CN201811123791.1

    申请日:2018-09-26

    Abstract: 本发明公开了一种基于改进型胶囊网络的语音数据分类方法,首先在训练阶段,构造胶囊网络的编码器,对初始语音音素数据进行编码得到初级胶囊;构造胶囊网络的动态路由结构,将初级胶囊中的信息传递给高级胶囊;以每个高级胶囊的长度的softmax激活值表征初始语音音素数据属于对应类别的概率;然后构造胶囊网络的解码器,将真实音素符号对应的高级胶囊进行解码重构;基于总损失函数对胶囊网络的参数进行优化;在测试阶段,将初始语音音素数据输入胶囊网络的编码器中,判断待测试数据的所属类别。本发明实现对语音音素的时序信号所对应的音速符号的精准识别,解决按照理论知识直接提取的特征准确度低、语音数据分类效果差以及过拟合的技术问题。

    语音转换基于扩展内核类网格法处理零散数据建模方法及设备

    公开(公告)号:CN109256142A

    公开(公告)日:2019-01-22

    申请号:CN201811131244.8

    申请日:2018-09-27

    Abstract: 本发明公开了一种语音转换基于可扩展内核类网格法处理零散数据建模方法,语音数据根据时间间隔经过前期的预处理分帧,语音转换通过取源语音某一音色的多维数据与目标语音的对应一维数据进行映射拟合,源语音的多维数据和一维目标语音数据作为训练数据,经过高斯回归模型进行训练,高斯过程采取可扩展性内核,建立类似网格结构,从中设置合适数量代表点通过局部三次插值和反距离权重插值法来作结构性内核逼近,从而大大加快高斯回归模型快速拟合;本发明通过设置合适数量代表点作精确内核逼近得到近似内核,这样既降低高斯过程计算量,大幅减小数据训练时间,又不会降低回归预测精度,做到同时兼顾。

    语音转换基于扩展内核类网格法处理零散数据建模方法及设备

    公开(公告)号:CN109256142B

    公开(公告)日:2022-12-02

    申请号:CN201811131244.8

    申请日:2018-09-27

    Abstract: 本发明公开了一种语音转换基于可扩展内核类网格法处理零散数据建模方法,语音数据根据时间间隔经过前期的预处理分帧,语音转换通过取源语音某一音色的多维数据与目标语音的对应一维数据进行映射拟合,源语音的多维数据和一维目标语音数据作为训练数据,经过高斯回归模型进行训练,高斯过程采取可扩展性内核,建立类似网格结构,从中设置合适数量代表点通过局部三次插值和反距离权重插值法来作结构性内核逼近,从而大大加快高斯回归模型快速拟合;本发明通过设置合适数量代表点作精确内核逼近得到近似内核,这样既降低高斯过程计算量,大幅减小数据训练时间,又不会降低回归预测精度,做到同时兼顾。

    基于一致性路由网络的语音音素识别方法

    公开(公告)号:CN109741733A

    公开(公告)日:2019-05-10

    申请号:CN201910035513.9

    申请日:2019-01-15

    Abstract: 本发明公开一种基于一致性路由网络的语音音素识别方法,首先在训练阶段,构造一致性路由前馈网络编码器,对向量初始语音音素数据进行矩阵运算和二维卷积得到低阶状态向量;构造一致性路由网络的一致性路由结构,通过一致性路由系数加权低阶状态向量,将其中的信息传递给高阶状态向量;以每个高阶状态向量的长度的softmax激活值在所有高阶状态向量softmax激活值中的占比来表示判定为该标签的概率;然后构造一致性路由网络的重构解码器,将真实标签对应的高阶状态向量进行解码重构;基于总损失函数对一致性路由网络的参数求得梯度公式进行优化更新;在测试阶段,将初始语音音素数据输入一致性路由网络的前馈编码器中,判断待测试数据的所属类别。

    一种肌电信号特征提取方法

    公开(公告)号:CN109308471A

    公开(公告)日:2019-02-05

    申请号:CN201811148444.4

    申请日:2018-09-29

    Abstract: 本发明公开了一种肌电信号特征提取方法,首先对肌电信号作傅里叶变换取傅里叶系数,选取预设频段的傅里叶系数并归一化;构建堆叠自动编码器,设置每一层网络参数进行训练更新参数;构建堆叠的受限玻尔兹曼机,设置每一层网络参数进行训练更新参数;在预训练自动编码器和受限玻尔兹曼机完成后,将两部分预训练的参数前后连接起来,即自动编码器的输出为受限玻尔兹曼机的输入,形成一个贯通的网络,实现肌电信号特征提取,解决现有肌电信号提取方法时面临的时域特征变化大、频域特征提取不充分的问题。

Patent Agency Ranking