一种锂离子电池正极材料纳米磷酸亚铁锂的制备方法

    公开(公告)号:CN102185136B

    公开(公告)日:2013-12-04

    申请号:CN201010144819.7

    申请日:2010-04-09

    Applicant: 清华大学

    Abstract: 本发明公开了属于纳米磷酸亚铁锂制备技术领域的一种锂离子电池正极材料纳米磷酸亚铁锂的制备方法。利用旋转填充床方法纳米水合磷酸铁;再将纳米水合磷酸铁焙烧脱水,得到无水纳米磷酸铁粉体;按照化学计量比称取锂源化合物、碳源化合物和无水纳米磷酸铁,加入纯水和分散剂,搅拌混合均匀,制备浆料,制得的浆料进行喷雾干燥,所得粉体在惰性气体保护下在热处理,得到纳米磷酸亚铁锂材料。本发明制备的纳米磷酸亚铁锂材料成分均匀,批量稳定性好,在室温下1C倍率放电比容量大于130mAh/g,5C倍率放电比容量大于110mAh/g,在功率型锂离子电池领域有很大的应用价值。可以大规模生产,成本低廉。

    一种制备纳米碳酸锂的方法

    公开(公告)号:CN102180488B

    公开(公告)日:2013-03-27

    申请号:CN201010144824.8

    申请日:2010-04-09

    Applicant: 清华大学

    Abstract: 本发明公开了属于纳米碳酸锂制备技术领域的一种制备纳米碳酸锂的方法。先将水溶性锂盐或氢氧化锂、水和水溶性分散剂配成混合溶液,再将该混合溶液喷淋、分散到旋转填充床环形填充区的多孔填料上,同时通入CO2或者水溶性碳酸盐水溶液,在离心力作用下使其快速充分混合,反应结晶生成的纳米碳酸锂颗粒随混合液由旋转填充床的出料口排出,经过滤、洗涤、干燥工序处理后得到纳米级碳酸锂粉末。使用旋转填充床反应器,设备简单、体积小、常压反应、能耗小,因此,制备成本低。工艺简单、操作方便、反应迅速,生产效率高,反应过程没有副反应发生且不产生有毒有害物质,环境友好。制备得到的纳米碳酸锂组成稳定、粒度大小均匀、粒度分布范围窄。

    用界面控制罐控制运行萃取塔上澄清室界面的方法

    公开(公告)号:CN102350085A

    公开(公告)日:2012-02-15

    申请号:CN201110207496.6

    申请日:2011-07-22

    Applicant: 清华大学

    Abstract: 一种用界面控制罐控制运行萃取塔上澄清室界面的方法,采用界面控制罐控制运行在重相连续的萃取塔上澄清室界面的方法与其它控制方式相比,本发明具有明显的优势:①设备结构更简单、运行稳定,放大设计可靠;②环节少、动力消耗小、节约能源;③节约成本,基本不用检修;④噪音小,对周围环境基本没有影响。

    磷酸铁锂和磷酸亚铁与它们的制备方法

    公开(公告)号:CN102070132A

    公开(公告)日:2011-05-25

    申请号:CN201010561775.8

    申请日:2010-11-18

    Applicant: 清华大学

    Abstract: 本发明公开了一种磷酸亚铁和磷酸铁锂及其制备方法。磷酸亚铁的制备方法包括:先在惰性气体保护下,将二价铁盐的水溶液与磷酸根离子的水溶液混合后,控制反应过程中的pH值为6.0-7.0,反应完毕干燥后得到球形水合磷酸亚铁前驱体;再进行热处理,得到磷酸亚铁。再与磷源化合物、锂源化合物及碳源化合物混合均匀后,在惰性气体气氛下进行高温热处理得到磷酸铁锂。本发明提供的方法可制备出粒径为0.5-10μm的磷酸亚铁前驱体,以此前驱体制备磷酸铁锂不需要还原反应,热处理温度可大大降低,制备出的磷酸铁锂材料具有较高的堆积密度和较好电化学性能,在锂离子电池领域具有很好的应用前景。

    一种锂硫二次电池的制备方法

    公开(公告)号:CN101420047A

    公开(公告)日:2009-04-29

    申请号:CN200810227996.4

    申请日:2008-12-04

    Applicant: 清华大学

    Abstract: 本发明公开了新能源技术领域一种锂硫二次电池及其制备方法。所述负极由石墨浆料涂覆在铜箔基体上形成的极片及沉积于石墨极片表面上的锂沉积层组成。所述制备方法:石墨粉末、粘结剂、增粘剂和导电剂加入溶剂,混合均匀成为浆料,刮涂在铜箔基体上形成极片,然后在石墨极片表面真空蒸发镀锂。利用本发明的表面真空蒸镀锂的石墨为负极的锂硫二次电池,避免使用高活性的金属锂箔负极,有利于提高锂硫二次电池的安全性和循环稳定性,解决了目前以金属锂箔为主的锂硫二次电池负极材料存在循环性、安全性差的问题。

    聚丙烯腈低温热解复合金属负极材料的制备方法

    公开(公告)号:CN100375759C

    公开(公告)日:2008-03-19

    申请号:CN200610089726.2

    申请日:2006-07-14

    Applicant: 清华大学

    Abstract: 聚丙烯腈低温热解复合金属负极材料的制备方法属于化学工程及能源材料技术领域,特别涉及锂二次电池负极材料的制备技术领域。其特征在于,包含:将储锂活性金属颗粒与聚丙烯腈和可溶解聚丙烯腈的溶剂一起球磨,把储锂活性金属颗粒磨成细粉末,使其均匀分散在聚丙烯腈液体中;将上述溶液烘干,除去溶剂;将所得产物置于反应器内,在惰性气体保护下,升温至200℃~900℃,恒温反应,然后在反应器内自然冷却,得到聚丙烯腈热解复合金属负极材料。本方法能够制备得到的复合金属负极材料具有容量高、循环性能好的优点,达到了预期的目的。其制备方法简单,成本低廉,有很好的工业应用价值。

    微波碳热还原制备高密度球形磷酸铁锂复合材料的方法

    公开(公告)号:CN1986396A

    公开(公告)日:2007-06-27

    申请号:CN200610165581.X

    申请日:2006-12-22

    Applicant: 清华大学

    Abstract: 微波碳热还原制备高密度球形磷酸铁锂复合材料的方法属于能源材料制备技术领域,特别涉及用于锂离子电池正极材料的热制备高密度磷酸铁锂的技术领域。其特征在于,是将三价铁盐水溶液、磷源水溶液、碱水溶液、导电剂配制成混合溶液,固液分离、干燥并高温处理得到无水磷酸铁前驱体;然后将前驱体与碳源、锂源进行混合压片,埋入盛有碳的坩锅中用微波加热,制得球形复合磷酸铁锂。本发明能够制备高堆积密度、高体积比容量的锂离子电池正极材料球形复合磷酸铁锂,且该方法工艺简单、成本低廉,适于工业化生产。

    高密度球形磷酸铁锂及磷酸锰铁锂的制备方法

    公开(公告)号:CN1305148C

    公开(公告)日:2007-03-14

    申请号:CN200510002012.9

    申请日:2005-01-12

    Applicant: 清华大学

    CPC classification number: H01M4/5825 H01M10/0525

    Abstract: 本发明公开了属于能源材料制备技术领域的一种用于锂离子电池正极材料的高密度球形磷酸铁锂及磷酸锰铁锂的制备方法。其制备方法是先将硫酸亚铁、磷源、络合剂或在其中再加入硫酸锰,按比例混合后配成混合物水溶液,再与氨水溶液反应合成球形磷酸亚铁铵或磷酸锰亚铁铵前驱体,洗涤干燥后与碳酸锂以摩尔比1∶1均匀混合,在氮气气氛保护下,经过600~900℃高温热处理8~48小时得到磷酸铁锂或磷酸锰铁锂。本制备方法制备出平均粒径为7~12μm,振实密度可达2.0~2.2g/cm3,室温下首次放电比容量可达145~160mAh/g的高堆积密度、高体积比容量的锂离子电池正极材料球形磷酸铁锂和磷酸锰铁锂。

    掺锡的锂锰氧化物正极材料及其制备方法

    公开(公告)号:CN1921186A

    公开(公告)日:2007-02-28

    申请号:CN200610089724.3

    申请日:2006-07-14

    Applicant: 清华大学

    Abstract: 掺锡的锂锰氧化物正极材料及其制备方法属于新材料制备技术领域,特别涉及锂离子电池正极材料的制备技术。该材料的化学式为:Li(MnxSnz)2O4,x和z分别是锰和锡的摩尔比,满足x+z=1,其中锡的摩尔数占锡和锰总摩尔数的0.1%~10%。制备方法为:将高温下能够分解产生锰金属氧化物的化合物或锰的氧化物、高温下能够分解产生氧化锡的化合物或氧化锡、高温下能够分解产生氧化锂的化合物或氧化锂混合,将混合物进行高温固相反应,得到掺杂锡的锂锰氧化物正极材料,其中反应温度为600~1000℃,保温时间为5~40小时。该复合材料的具有较好的循环特性,其制备方法的材料成本低、工艺流程简单,具有很好的应用前景。

Patent Agency Ranking