基于超服务网络的服务推荐方法、系统、设备和存储介质

    公开(公告)号:CN118013130B

    公开(公告)日:2024-06-04

    申请号:CN202410410829.2

    申请日:2024-04-08

    Abstract: 本发明涉及商业领域数据预测推荐技术领域,具体为基于超服务网络的服务推荐方法、系统、设备和存储介质;为解决现有服务网络不能很好的表现出大量服务节点之间关系,影响服务推荐的准确度的问题,该服务推荐方法首先将节点端对端连接的初始服务网络中,每个初始服务节点的边总数,作为初始服务节点关键性顺序,进行基于超边的超服务网络的构建,得到初始超服务网络;然后,通过判断初始超服务网络中的服务节点总数大小,并基于服务节点超边、信誉值和协作次数,选择对初始超服务网络进行优化;最后,根据服务节点超边、信誉值和协作次数计算推荐值后,进行服务推荐;该推荐方法,推荐准确度高,用于商业领域服务推荐中会提高商业内容消费。

    基于超服务网络的服务推荐方法、系统、设备和存储介质

    公开(公告)号:CN118013130A

    公开(公告)日:2024-05-10

    申请号:CN202410410829.2

    申请日:2024-04-08

    Abstract: 本发明涉及商业领域数据预测推荐技术领域,具体为基于超服务网络的服务推荐方法、系统、设备和存储介质;为解决现有服务网络不能很好的表现出大量服务节点之间关系,影响服务推荐的准确度的问题,该服务推荐方法首先将节点端对端连接的初始服务网络中,每个初始服务节点的边总数,作为初始服务节点关键性顺序,进行基于超边的超服务网络的构建,得到初始超服务网络;然后,通过判断初始超服务网络中的服务节点总数大小,并基于服务节点超边、信誉值和协作次数,选择对初始超服务网络进行优化;最后,根据服务节点超边、信誉值和协作次数计算推荐值后,进行服务推荐;该推荐方法,推荐准确度高,用于商业领域服务推荐中会提高商业内容消费。

    基于先验知识强化学习的电网故障诊断方法、系统和装置

    公开(公告)号:CN119293669B

    公开(公告)日:2025-03-07

    申请号:CN202411803360.5

    申请日:2024-12-10

    Applicant: 烟台大学

    Abstract: 本发明涉及强化学习、电网故障诊断技术领域,具体为一种基于先验知识强化学习的电网故障诊断方法、系统和装置,获取不同环境状态下电网故障的告警数据文本,首先将告警数据文本与先验知识中的关键特征规则先进行关键特征的文本匹配,如果匹配成功,则直接输出动作,将匹配不成功的告警数据文本经嵌入处理后转化为嵌入向量,对嵌入向量进行进一步处理,得到当前环境状态下不同动作的期望值,然后基于开关特征、开关状态特征、不同动作的估计期望值获得当前环境状态下估计期望值最高的动作和对应的电网故障类型,并引入经验回放更新估计期望值,有效提高了对电网故障诊断的有效性和准确性。

    基于先验知识强化学习的电网故障诊断方法、系统和装置

    公开(公告)号:CN119293669A

    公开(公告)日:2025-01-10

    申请号:CN202411803360.5

    申请日:2024-12-10

    Applicant: 烟台大学

    Abstract: 本发明涉及强化学习、电网故障诊断技术领域,具体为一种基于先验知识强化学习的电网故障诊断方法、系统和装置,获取不同环境状态下电网故障的告警数据文本,首先将告警数据文本与先验知识中的关键特征规则先进行关键特征的文本匹配,如果匹配成功,则直接输出动作,将匹配不成功的告警数据文本经嵌入处理后转化为嵌入向量,对嵌入向量进行进一步处理,得到当前环境状态下不同动作的期望值,然后基于开关特征、开关状态特征、不同动作的估计期望值获得当前环境状态下估计期望值最高的动作和对应的电网故障类型,并引入经验回放更新估计期望值,有效提高了对电网故障诊断的有效性和准确性。

Patent Agency Ranking