以音频模态为目标模态的多模态情感分析方法和系统

    公开(公告)号:CN118965139A

    公开(公告)日:2024-11-15

    申请号:CN202411464881.2

    申请日:2024-10-21

    Abstract: 本申请涉及多模态数据处理技术领域,具体为以音频模态为目标模态的多模态情感分析方法和系统;为解决现有技术中多模态情感分析准确度较低的问题,本申请制定当存在音频模态时,将图像模态和文本模态翻译为音频模态,经融合后进行神经网络处理,得到多模态情感预测结果;当不存在音频模态时,用互信息分数来判断哪个模态中所含的情感信息更多,以此来让其他模态向其翻译,得到缺失联合特征,并将标准完整联合特征作为目标,缺失联合特征向完整联合特征逼近进行神经网络处理,得到多模态情感预测结果;该方法应用到多模态情感分析领域中,处理过程更灵活、分析过程更全面、更合理,得到情感预测结果准确度更高。

    基于用户偏好的服务推荐方法、系统、设备和存储介质

    公开(公告)号:CN118134606B

    公开(公告)日:2024-07-23

    申请号:CN202410544307.1

    申请日:2024-05-06

    Abstract: 本申请涉及商业领域数据预测推荐技术领域,具体为基于用户偏好的服务推荐方法、系统、设备和存储介质;为解决现有技术当中服务推荐准确度较低的问题,本申请首先将基于交互结构图得到的目标用户和服务信息,分别进行门控图神经网络处理和双向门控循环单元处理,获得目标用户长期偏好向量和目标用户短期偏好向量后,进行融合,得到目标用户个性化偏好向量;最后,将每个服务与目标用户个性化偏好向量的概率映射值作为推荐值,并将推荐值大于推荐阈值的服务,作为推荐服务推荐给目标用户,实现快捷准确的服务推荐,应用在商业领域数据预测中,能增加用户体验,提升商业内容消费。

    基于多模态情绪感知的主动服务推荐方法、系统和设备

    公开(公告)号:CN118035565B

    公开(公告)日:2024-06-11

    申请号:CN202410430460.1

    申请日:2024-04-11

    Abstract: 本发明涉及商业领域数据预测推荐技术领域,具体为基于多模态情绪感知的主动服务推荐方法、系统和设备;该服务推荐方法,首先针对不同模态特点进行不同特征提取方式,得到文本特征向量、图像特征向量和音频特征向量;然后,将片段融合向量与视频总融合向量均值进行处理后分类,得到用户情绪向量;最后,基于用户地址、属性和情绪、服务地址和属性、场景等信息,构建用户‑服务‑情景的图结构,基于图卷积处理的方式,得到的目标用户节点传播特征向量,服务节点传播特征向量,情景节点传播特征向量,经推荐值计算,将推荐值大于阈值对应的服务推荐给目标用户,实现对目标用户丰富且准确的服务推荐,提升用户的体验感。

    基于用户偏好的服务推荐方法、系统、设备和存储介质

    公开(公告)号:CN118134606A

    公开(公告)日:2024-06-04

    申请号:CN202410544307.1

    申请日:2024-05-06

    Abstract: 本申请涉及商业领域数据预测推荐技术领域,具体为基于用户偏好的服务推荐方法、系统、设备和存储介质;为解决现有技术当中服务推荐准确度较低的问题,本申请首先将基于交互结构图得到的目标用户和服务信息,分别进行门控图神经网络处理和双向门控循环单元处理,获得目标用户长期偏好向量和目标用户短期偏好向量后,进行融合,得到目标用户个性化偏好向量;最后,将每个服务与目标用户个性化偏好向量的概率映射值作为推荐值,并将推荐值大于推荐阈值的服务,作为推荐服务推荐给目标用户,实现快捷准确的服务推荐,应用在商业领域数据预测中,能增加用户体验,提升商业内容消费。

    基于融合分解与主干聚拢的多模态情感分析方法及系统

    公开(公告)号:CN119720102A

    公开(公告)日:2025-03-28

    申请号:CN202510228062.6

    申请日:2025-02-28

    Abstract: 本发明涉及多模态情感分析技术领域,尤其是涉及基于融合分解与主干聚拢的多模态情感分析方法及系统。所述方法,包括获取带有不确定缺失的多模态数据,构建情感分析模型,利用训练完成的模型输出情感预测结果。本发明的基于融合分解与主干聚拢的多模态情感分析方法,提出了金字塔多头注意力机制,金字塔多头注意力机制通过层层递进的方式逐步增加注意力头的数量,并自适应结合各层的结果,从而更好地提取不同模态中的多层次特征信息,提高情感分析的准确性和鲁棒性;此外,为了节省多头注意力的资源消耗以及提升运行速度,将多头注意力中的值(V)去掉,直接用键(K)来代替V,以此去掉V相关的操作来提升性能。

    一种基于预训练与在线学习的多模态情感分析方法及系统

    公开(公告)号:CN119557426A

    公开(公告)日:2025-03-04

    申请号:CN202510111855.X

    申请日:2025-01-24

    Abstract: 本发明涉及多模态情感分析技术领域,尤其是涉及一种基于预训练与在线学习的多模态情感分析方法及系统。所述方法,包括获取情感分析多模态数据,构建情感分析模型,包括构建多头注意力机制分别对文本、图像和音频模态进行编码处理,并将编码后的各模态特征拼接融合;利用前馈神经网络与多头注意力机制对融合特征中各模态间的交互关系进行挖掘;通过构建全连接神经网络评估联合特征中各模态对情感分析任务的贡献程度;将联合特征和加权后的各模态特征融合实现特征补充优化,利用训练完成的模型输出情感预测结果,本发明通过构建多头注意力机制对各模态进行编码处理,将编码后的模态特征进行拼接融合,从而显著提升情感分析的准确性。

    一种随机群组的兴趣点推荐方法、系统、设备和存储介质

    公开(公告)号:CN118193853B

    公开(公告)日:2024-07-23

    申请号:CN202410605377.3

    申请日:2024-05-16

    Abstract: 本发明涉及商业领域数据预测推荐技术领域,具体为一种随机群组的兴趣点推荐方法、系统、设备和存储介质;为解决现有技术中随机群组兴趣点预测结果较低,推荐准确度较低,影响用户商业体验感的问题,本申请首先将基于随机群组的相似用户得到的待推荐兴趣点集特点,与用户性格影响度结合,获取随机群组拟合特征表示;接着,通过将兴趣交互结构图进行多层图神经网络处理,得到每个待推荐兴趣点特征表示;随后,将待推荐兴趣点特征表示进行概率映射处理,获取优选兴趣点;最后,根据优选兴趣点的预测评分获取随机用户的期望值后,进行多协商推荐处理,得到最优推荐兴趣点;应用在商业数据预测领域中,能提高推荐准确度更高,提升用户商业体验感。

    基于超服务网络的服务推荐方法、系统、设备和存储介质

    公开(公告)号:CN118013130A

    公开(公告)日:2024-05-10

    申请号:CN202410410829.2

    申请日:2024-04-08

    Abstract: 本发明涉及商业领域数据预测推荐技术领域,具体为基于超服务网络的服务推荐方法、系统、设备和存储介质;为解决现有服务网络不能很好的表现出大量服务节点之间关系,影响服务推荐的准确度的问题,该服务推荐方法首先将节点端对端连接的初始服务网络中,每个初始服务节点的边总数,作为初始服务节点关键性顺序,进行基于超边的超服务网络的构建,得到初始超服务网络;然后,通过判断初始超服务网络中的服务节点总数大小,并基于服务节点超边、信誉值和协作次数,选择对初始超服务网络进行优化;最后,根据服务节点超边、信誉值和协作次数计算推荐值后,进行服务推荐;该推荐方法,推荐准确度高,用于商业领域服务推荐中会提高商业内容消费。

    一种基于预训练与在线学习的多模态情感分析方法及系统

    公开(公告)号:CN119557426B

    公开(公告)日:2025-04-18

    申请号:CN202510111855.X

    申请日:2025-01-24

    Abstract: 本发明涉及多模态情感分析技术领域,尤其是涉及一种基于预训练与在线学习的多模态情感分析方法及系统。所述方法,包括获取情感分析多模态数据,构建情感分析模型,包括构建多头注意力机制分别对文本、图像和音频模态进行编码处理,并将编码后的各模态特征拼接融合;利用前馈神经网络与多头注意力机制对融合特征中各模态间的交互关系进行挖掘;通过构建全连接神经网络评估联合特征中各模态对情感分析任务的贡献程度;将联合特征和加权后的各模态特征融合实现特征补充优化,利用训练完成的模型输出情感预测结果,本发明通过构建多头注意力机制对各模态进行编码处理,将编码后的模态特征进行拼接融合,从而显著提升情感分析的准确性。

    一种随机群组的兴趣点推荐方法、系统、设备和存储介质

    公开(公告)号:CN118193853A

    公开(公告)日:2024-06-14

    申请号:CN202410605377.3

    申请日:2024-05-16

    Abstract: 本发明涉及商业领域数据预测推荐技术领域,具体为一种随机群组的兴趣点推荐方法、系统、设备和存储介质;为解决现有技术中随机群组兴趣点预测结果较低,推荐准确度较低,影响用户商业体验感的问题,本申请首先将基于随机群组的相似用户得到的待推荐兴趣点集特点,与用户性格影响度结合,获取随机群组拟合特征表示;接着,通过将兴趣交互结构图进行多层图神经网络处理,得到每个待推荐兴趣点特征表示;随后,将待推荐兴趣点特征表示进行概率映射处理,获取优选兴趣点;最后,根据优选兴趣点的预测评分获取随机用户的期望值后,进行多协商推荐处理,得到最优推荐兴趣点;应用在商业数据预测领域中,能提高推荐准确度更高,提升用户商业体验感。

Patent Agency Ranking