一种航空发动机叶片疲劳裂纹原位快速检测探头及方法

    公开(公告)号:CN118169230A

    公开(公告)日:2024-06-11

    申请号:CN202410160069.4

    申请日:2024-02-05

    Abstract: 本发明涉及无损检测领域,公开一种航空发动机叶片疲劳裂纹原位快速涡流检测探头及检测方法。采用仿形面阵柔性扫频涡流检测传感器,设计可柔性变形、自适形于待检叶片叶身的叶背和叶盆表面的仿形柔性骨架以及多层柔性线路板,其由至少三层的柔性线路板叠合而成,每层柔性线路板均设置有面阵列排布的多个阵元线圈、三层柔性线路板上同一纵向位置上的阵元线圈之间小间距错开形成三圆交叉状;多层线路板最上层的表面还设置有可吸附在叶片上的透明粘膜;采用高频分时分层激励工作模式,获取每层柔性线路板上的阵元线圈的检测信号,利用多层检测信号反演推算出是否存在裂纹以及裂纹的位置、大小和走向信息,一次成像极大的提高检测效率和检测精度。

    一种涡流和声阻抗检测传感器及其制作方法

    公开(公告)号:CN112326782B

    公开(公告)日:2022-06-21

    申请号:CN202011233452.6

    申请日:2020-11-06

    Abstract: 本发明一种涡流和声阻抗检测传感器及其制作方法,用于金属和非金属复合材料(1)中的金属层(11)和非金属层(12)进行无损检测,包括检测仪器(2)和检测探头(3),其特征在于所述检测探头(3)包括设置于探头外壳(31)内、通过检测探头内部中心引线(32)连接于检测仪器(2)的检测传感器(33),其中检测传感器(33)包括压电晶片(334)、以及包覆于压电晶片(334)的上金属膜层(332)和下金属膜层(333),所述下金属膜层(333)设置为刻制而成的平面螺旋线状的涡流线圈(335),通过设置于检测传感器(33)的中心通孔(331)引出电连接引线。实现多功能集成而小型方便的检测传感器探头装置,更适用于野外检测作业或远程云监测。

    一种涡流和声阻抗检测传感器及其制作方法

    公开(公告)号:CN112326782A

    公开(公告)日:2021-02-05

    申请号:CN202011233452.6

    申请日:2020-11-06

    Abstract: 本发明一种涡流和声阻抗检测传感器及其制作方法,用于金属和非金属复合材料(1)中的金属层(11)和非金属层(12)进行无损检测,包括检测仪器(2)和检测探头(3),其特征在于所述检测探头(3)包括设置于探头外壳(31)内、通过检测探头内部中心引线(32)连接于检测仪器(2)的检测传感器(33),其中检测传感器(33)包括压电晶片(334)、以及包覆于压电晶片(334)的上金属膜层(332)和下金属膜层(333),所述下金属膜层(333)设置为刻制而成的平面螺旋线状的涡流线圈(335),通过设置于检测传感器(33)的中心通孔(331)引出电连接引线。实现多功能集成而小型方便的检测传感器探头装置,更适用于野外检测作业或远程云监测。

    一种检测非金属工件表面粗糙度的方法及装置

    公开(公告)号:CN116989663A

    公开(公告)日:2023-11-03

    申请号:CN202310978089.8

    申请日:2023-08-04

    Abstract: 本发明涉及非金属工件无损检测技术领域,尤其涉及一种检测非金属工件材料表面粗糙度的方法,本发明提出一种新的思路,在间接测量方法的基础上,其利用具有负模功能的电导性材料作为介质来转印非金属工件表面的粗糙轮廓,采用涡流法检测电导性材料上下表面之间的高度差,通过高度差的检测结果反算并绘制出电导性材料下表面的轮廓曲线,从而间接获取非金属工件表面粗糙度,本发明解决了当下对于非金属表面粗糙度难以检测的难题。本方法中负模材料与工件无需接触,无需等负模材料凝固脱模,实现了操作简单、检测效率高的效果;采用涡流检测,响应快,干扰因素小,结果准确率较高。

    一种在役道岔监测传感器终端装置及其终端控制系统

    公开(公告)号:CN112319544B

    公开(公告)日:2022-07-26

    申请号:CN202011254538.7

    申请日:2020-11-11

    Abstract: 本发明公开一种在役道岔监测传感器终端装置及其终端控制系统,用于在役轨道(3)特别是道岔的安全监测传感器终端装置(1),所述监测传感器终端装置(1)无线连接于检测中心分析仪器(2),放置于道岔进行监控检测,包括壳体(11)、终端控制装置(12)、检测传感器装置(13),其特征在于所述的检测传感器装置(13)包括线圈(131)和设置于检测线圈(131)中心的永磁铁(132)。在列车运行通过轨道道岔时,震动监测终端中的永磁铁上下移动,促使检测线圈形成切割磁力线的状态,实现将道岔震动的机械动能转化为电能量。

Patent Agency Ranking