-
公开(公告)号:CN108051648B
公开(公告)日:2018-12-18
申请号:CN201711258187.5
申请日:2017-12-01
Applicant: 西安交通大学 , 新疆维吾尔自治区特种设备检验研究院
IPC: G01R27/08 , G01R33/022
Abstract: 一种基于直流电位和涡流检测法的材料电磁属性测量方法,该方法实验装置由直流电位法装置和涡流检测法装置组成;实现该方法时,首先通过直流电位法装置中的恒流源给试件施加恒定电流激励,用纳伏表采集电压信号,通过计算可得到试件的电导率;然后通过涡流检测法装置中的激励线圈给试件施加激励,再用检出线圈检出电压信号;由于检出线圈的电压信号与试件的电导率和磁导率均相关,所以在由直流电位法测得试件电导率的前提下就可以对涡流检出信号通过共轭梯度法反演求得材料的磁导率;相较于传统的试件电导率和磁导率的测量方法,本发明方法能达到同时测量磁性材料电导率和磁导率的目的,而且激励频率可调,具有广泛的应用前景。
-
公开(公告)号:CN108051648A
公开(公告)日:2018-05-18
申请号:CN201711258187.5
申请日:2017-12-01
Applicant: 西安交通大学 , 新疆维吾尔自治区特种设备检验研究院
IPC: G01R27/08 , G01R33/022
CPC classification number: G01R27/08 , G01R33/022
Abstract: 一种基于直流电位和涡流检测法的材料电磁属性测量方法,该方法实验装置由直流电位法装置和涡流检测法装置组成;实现该方法时,首先通过直流电位法装置中的恒流源给试件施加恒定电流激励,用纳伏表采集电压信号,通过计算可得到试件的电导率;然后通过涡流检测法装置中的激励线圈给试件施加激励,再用检出线圈检出电压信号;由于检出线圈的电压信号与试件的电导率和磁导率均相关,所以在由直流电位法测得试件电导率的前提下就可以对涡流检出信号通过共轭梯度法反演求得材料的磁导率;相较于传统的试件电导率和磁导率的测量方法,本发明方法能达到同时测量磁性材料电导率和磁导率的目的,而且激励频率可调,具有广泛的应用前景。
-
公开(公告)号:CN108152365B
公开(公告)日:2019-07-23
申请号:CN201711161571.3
申请日:2017-11-20
Applicant: 西安交通大学 , 新疆维吾尔自治区特种设备检验研究院
Abstract: 基于小波分析的脉冲涡流电磁超声复合无损检测方法,首先在圆形线圈上放置永磁体制作电磁超声/脉冲涡流复合探头,通过脉冲涡流装置对探头进行脉冲激励,通过双工器分离出检出信号,通过小波分析的方法,选取合适的小波母波信号,对分离出的检出信号进行分解,对分解到的小波系数进行阈值分离和重构,从而从混合检出信号中分别提取得到涡流检测信号和超声检测信号,通过两种不同检测信号来检测不同位置和类型的缺陷信息;相比于发明人已经提出过的基于频谱分析滤波策略的复合无损检测方法,本发明提出的基于小波分析的脉冲涡流电磁超声复合无损检测方法,无需信号处理硬件设备,只需要一个脉冲电流源和双工器,极大的缩小了硬件设备的大小,同时提升了复合信号中超声信号的信噪比,具备更广泛的应用前景。
-
公开(公告)号:CN108152365A
公开(公告)日:2018-06-12
申请号:CN201711161571.3
申请日:2017-11-20
Applicant: 西安交通大学 , 新疆维吾尔自治区特种设备检验研究院
CPC classification number: G01N27/90 , G01N29/0654
Abstract: 基于小波分析的脉冲涡流电磁超声复合无损检测方法,首先在圆形线圈上放置永磁体制作电磁超声/脉冲涡流复合探头,通过脉冲涡流装置对探头进行脉冲激励,通过双工器分离出检出信号,通过小波分析的方法,选取合适的小波母波信号,对分离出的检出信号进行分解,对分解到的小波系数进行阈值分离和重构,从而从混合检出信号中分别提取得到涡流检测信号和超声检测信号,通过两种不同检测信号来检测不同位置和类型的缺陷信息;相比于发明人已经提出过的基于频谱分析滤波策略的复合无损检测方法,本发明提出的基于小波分析的脉冲涡流电磁超声复合无损检测方法,无需信号处理硬件设备,只需要一个脉冲电流源和双工器,极大的缩小了硬件设备的大小,同时提升了复合信号中超声信号的信噪比,具备更广泛的应用前景。
-
公开(公告)号:CN111965216A
公开(公告)日:2020-11-20
申请号:CN202010852768.7
申请日:2020-08-22
Applicant: 西安交通大学
Abstract: 基于脉冲涡流红外的LED芯片焊接层空洞率无损评价方法,首先将激励线圈和高分辨率红外相机放置在LED芯片上方,利用冷却装置对与感应加热装置相连的激励线圈进行冷却;然后利用感应加热装置给激励线圈施加脉冲激励电流的同时,通过数据采集装置给高分辨率红外相机一个触发信号,使高分辨率红外相机的图像采集与施加于激励线圈的激励信号实现同步;最后将高分辨率红外相机采集的RGB图像转换为灰度图,通过分析灰度图中空洞区域即可对LED芯片焊接层空洞率对进行无损评价;本发明方法可以快速对LED芯片焊接层空洞率进行无损评价,为其提供了可靠的评价方法,具有良好的应用前景。
-
公开(公告)号:CN111982967A
公开(公告)日:2020-11-24
申请号:CN202010852766.8
申请日:2020-08-22
Applicant: 核动力运行研究所 , 西安交通大学 , 中核武汉核电运行技术股份有限公司
Abstract: 一种基于永磁铁的磁饱和脉冲涡流红外无损评价方法,首先通过计算机控制程序控制器同步触发感应加热器和红外热像仪,感应加热器接收到触发信号的同时给与加热头相连的加热线圈施加一个脉冲电流激励,冷却装置同时对感应加热器、加热头和加热线圈进行冷却;永磁铁周围产生较强的静态磁场,铁磁性材料在永磁铁的作用下达到磁饱和,然后在加热线圈的作用下产生焦耳热,通过热传导引起材料表面温度的变化;最后通过红外热像仪采集温度的变化并通过分析采集到的图像序列对铁磁性材料进行缺陷无损评价。相较于传统的脉冲涡流红外无损检测方法,本发明方法对铁磁性材料的检测深度更大,具有广泛的应用前景。
-
公开(公告)号:CN108896459A
公开(公告)日:2018-11-27
申请号:CN201810550687.4
申请日:2018-05-31
Applicant: 西安交通大学
IPC: G01N15/06
CPC classification number: G01N15/06
Abstract: 基于交变磁场脉冲红外的磁性水凝胶磁性粒子浓度检测方法,首先对含不同浓度磁性粒子的磁性水凝胶进行交变磁场激励,并利用红外相机记录磁性水凝胶表面温度变化时间历程,得到磁性水凝胶表面温升速率-磁性粒子浓度标定曲线;然后根据磁性水凝胶表面温升速率-磁性粒子浓度标定曲线确定磁性粒子浓度-磁性水凝胶表面温升速率模型;最后将待测磁性水凝胶表面温升速率代入磁性粒子浓度-磁性水凝胶表面温升速率模型即可确定待测磁性水凝胶的磁性粒子浓度;本发明能够为磁性水凝胶中的磁性粒子浓度的定量检测提供可靠的方法,具有无损、高效、非接触、检测范围大、检测精度高等优点,填补了目前该领域的国际空白,可广泛应用于磁性水凝胶磁性粒子的浓度检测中。
-
公开(公告)号:CN108896459B
公开(公告)日:2020-10-23
申请号:CN201810550687.4
申请日:2018-05-31
Applicant: 西安交通大学
IPC: G01N15/06
Abstract: 基于交变磁场脉冲红外的磁性水凝胶磁性粒子浓度检测方法,首先对含不同浓度磁性粒子的磁性水凝胶进行交变磁场激励,并利用红外相机记录磁性水凝胶表面温度变化时间历程,得到磁性水凝胶表面温升速率‑磁性粒子浓度标定曲线;然后根据磁性水凝胶表面温升速率‑磁性粒子浓度标定曲线确定磁性粒子浓度‑磁性水凝胶表面温升速率模型;最后将待测磁性水凝胶表面温升速率代入磁性粒子浓度‑磁性水凝胶表面温升速率模型即可确定待测磁性水凝胶的磁性粒子浓度;本发明能够为磁性水凝胶中的磁性粒子浓度的定量检测提供可靠的方法,具有无损、高效、非接触、检测范围大、检测精度高等优点,可广泛应用于磁性水凝胶磁性粒子的浓度检测中。
-
公开(公告)号:CN108508082B
公开(公告)日:2019-02-26
申请号:CN201810226773.X
申请日:2018-03-19
Applicant: 西安交通大学
Abstract: 基于频域叠加法和能量等效法的脉冲涡流红外数值模拟方法,该方法由基于棱边元的退化磁矢位法、基于节点元的温度场计算方法、基于快速傅里叶变换的频域叠加法和基于能量等效原理的能量等效法组成;实现该方法时,首先,根据脉冲涡流红外无损检测实验确定相关数值模拟参数,包括:激励线圈尺寸、激励波形、被检试样尺寸、被检试样材料物性、提离距离等;然后,基于退化磁矢位法和频域叠加法开发脉冲涡流场数值计算程序,并将上述相关数值模拟参数导入,计算得到被测试样中的涡流分布情况;最后,基于节点元和能量等效法开发温度场计算程序,并将之前计算得到的被测试样中的涡流值导入,计算得到被测试样中的温度分布情况。
-
公开(公告)号:CN108508082A
公开(公告)日:2018-09-07
申请号:CN201810226773.X
申请日:2018-03-19
Applicant: 西安交通大学
Abstract: 基于频域叠加法和能量等效法的脉冲涡流红外数值模拟方法,该方法由基于棱边元的退化磁矢位法、基于节点元的温度场计算方法、基于快速傅里叶变换的频域叠加法和基于能量等效原理的能量等效法组成;实现该方法时,首先,根据脉冲涡流红外无损检测实验确定相关数值模拟参数,包括:激励线圈尺寸、激励波形、被检试样尺寸、被检试样材料物性、提离距离等;然后,基于退化磁矢位法和频域叠加法开发脉冲涡流场数值计算程序,并将上述相关数值模拟参数导入,计算得到被测试样中的涡流分布情况;最后,基于节点元和能量等效法开发温度场计算程序,并将之前计算得到的被测试样中的涡流值导入,计算得到被测试样中的温度分布情况。
-
-
-
-
-
-
-
-
-