基于位置注意力和辅助网络的3D点云语义分割方法

    公开(公告)号:CN110322453A

    公开(公告)日:2019-10-11

    申请号:CN201910604264.0

    申请日:2019-07-05

    Abstract: 本发明提出了一种基于位置注意力和辅助网络的3D点云语义分割方法,主要解决现有技术分割精度较低的问题,其实现方案是:获取训练集T和测试集V;构建3D点云语义分割网络,并设定该网络的损失函数,该网络包括依次级联的特征下采样网络,位置注意力模块,特征上采样网络和辅助网络;使用训练集T对该分割网络进行P轮有监督的训练:在每轮的训练过程中根据损失函数,调整网络参数,在P轮训练完成后,将分割精度最高的网络模型作为训练好的网络模型;将测试集V输入到训练好的网络模型中进行语义分割,得到每一个点的分割结果。本发明提高了3D点云语义分割精度,可用于自动驾驶、机器人、3D场景重建、质量检测,3D制图及智慧城市建设。

    基于深度学习和自注意力的3D点云数据语义分割方法

    公开(公告)号:CN110245709A

    公开(公告)日:2019-09-17

    申请号:CN201910526990.5

    申请日:2019-06-18

    Abstract: 本发明提出了一种基于深度学习和自注意力机制的3D点云数据语义分割方法,用于解决现有技术中存在的分割精度较低的技术问题,实现步骤包括:(1)获取训练集和验证集;(2)构建深度学习和自注意力机制的3D点云数据语义分割网络;(3)设置训练深度学习和自注意力机制的3D点云数据语义分割网络所需的损失函数;(4)对深度学习和自注意力机制的3D点云数据语义分割网络进行监督训练;(5)获取3D点云数据测试集的语义分割结果。本发明在深度学习网络中加入了自注意力模块,能够更好地提取包含各个特征通道之间关系的深层特征,从而提高分割精度。

    基于位置注意力和辅助网络的3D点云语义分割方法

    公开(公告)号:CN110322453B

    公开(公告)日:2023-04-18

    申请号:CN201910604264.0

    申请日:2019-07-05

    Abstract: 本发明提出了一种基于位置注意力和辅助网络的3D点云语义分割方法,主要解决现有技术分割精度较低的问题,其实现方案是:获取训练集T和测试集V;构建3D点云语义分割网络,并设定该网络的损失函数,该网络包括依次级联的特征下采样网络,位置注意力模块,特征上采样网络和辅助网络;使用训练集T对该分割网络进行P轮有监督的训练:在每轮的训练过程中根据损失函数,调整网络参数,在P轮训练完成后,将分割精度最高的网络模型作为训练好的网络模型;将测试集V输入到训练好的网络模型中进行语义分割,得到每一个点的分割结果。本发明提高了3D点云语义分割精度,可用于自动驾驶、机器人、3D场景重建、质量检测,3D制图及智慧城市建设。

    基于深度学习和自注意力的3D点云数据语义分割方法

    公开(公告)号:CN110245709B

    公开(公告)日:2021-09-03

    申请号:CN201910526990.5

    申请日:2019-06-18

    Abstract: 本发明提出了一种基于深度学习和自注意力机制的3D点云数据语义分割方法,用于解决现有技术中存在的分割精度较低的技术问题,实现步骤包括:(1)获取训练集和验证集;(2)构建深度学习和自注意力机制的3D点云数据语义分割网络;(3)设置训练深度学习和自注意力机制的3D点云数据语义分割网络所需的损失函数;(4)对深度学习和自注意力机制的3D点云数据语义分割网络进行监督训练;(5)获取3D点云数据测试集的语义分割结果。本发明在深度学习网络中加入了自注意力模块,能够更好地提取包含各个特征通道之间关系的深层特征,从而提高分割精度。

Patent Agency Ranking