-
公开(公告)号:CN114821052B
公开(公告)日:2024-08-23
申请号:CN202210444054.1
申请日:2022-04-25
Applicant: 西安电子科技大学
IPC: G06V10/26 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0455 , G06N3/084 , G06N3/09 , G06T7/00 , G06T19/20
Abstract: 本发明提出了一种基于自调节策略的三维脑肿瘤核磁共振图像分割方法,实现步骤为:(1)获取训练样本集和测试样本集;(2)构建自调节策略的脑肿瘤核磁共振图像分割网络模型G;(3)定义网络模型G的损失函数LSR;(4)对网络模型G进行迭代训练;(5)获取分割结果。本发明所构建的脑肿瘤图像分割方法,利用像素级分割网络提取浅层特征指导更深层网络的训练,促使深层网络获取更多肿瘤内部区域的细节信息;利用图像级分类网络获得的深层特征指导浅层网络的训练,以保留更多肿瘤核心区域的语义信息,并且分割和分类网络提取的特征互相监督,同时不引入额外的监督数据,进一步提高肿瘤核心区域的分割精度。
-
公开(公告)号:CN114821052A
公开(公告)日:2022-07-29
申请号:CN202210444054.1
申请日:2022-04-25
Applicant: 西安电子科技大学
IPC: G06V10/26 , G06V10/774 , G06V10/764 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08 , G06T7/00 , G06T19/20
Abstract: 本发明提出了一种基于自调节策略的三维脑肿瘤核磁共振图像分割方法,实现步骤为:(1)获取训练样本集和测试样本集;(2)构建自调节策略的脑肿瘤核磁共振图像分割网络模型G;(3)定义网络模型G的损失函数LSR;(4)对网络模型G进行迭代训练;(5)获取分割结果。本发明所构建的脑肿瘤图像分割方法,利用像素级分割网络提取浅层特征指导更深层网络的训练,促使深层网络获取更多肿瘤内部区域的细节信息;利用图像级分类网络获得的深层特征指导浅层网络的训练,以保留更多肿瘤核心区域的语义信息,并且分割和分类网络提取的特征互相监督,同时不引入额外的监督数据,进一步提高肿瘤核心区域的分割精度。
-