应用超声波改善动力学条件的钢包精炼方法

    公开(公告)号:CN102260769A

    公开(公告)日:2011-11-30

    申请号:CN201010181315.2

    申请日:2010-05-25

    Abstract: 本发明公开了一种应用超声波改善动力学条件的钢包精炼方法,在钢水中输入超声波,解决底吹气体搅拌存在搅拌死区问题。本发明包括以下内容:在转炉或电炉出钢后,将钢水倒入钢包内,将钢包置于精炼工位,在钢包底部开始吹氩气搅拌,加入造渣及脱氧材料,同时开启超声波发生器,在钢包底部及侧壁输入超声波,对钢水进行搅拌。超声波的功率由钢包内钢水的重量决定,超声波功率范围为5-500kW/吨钢水,超声波的输入时间为钢包精炼结束所用的时间。本发明可降低钢水夹杂和气体含量,显著提高钢包精炼效果。

    一种除鳞辊镍基表面涂层的寿命预测方法

    公开(公告)号:CN118965877A

    公开(公告)日:2024-11-15

    申请号:CN202411007860.8

    申请日:2024-07-25

    Abstract: 本发明公开了一种除鳞辊镍基表面涂层的寿命预测方法,包括以下步骤:获得除鳞辊的基材42CrMO和表面涂层WC45的材料应力‑寿命曲线,建立寿命预测有限元模型,根据原始工况中除鳞辊与板柸的形状尺寸以及相对摩擦关系,分别建立42CrMO滚动接触疲劳损伤几何模型和WC45滚动接触疲劳损伤几何模型,构建42CrMO滚动接触疲劳损伤本构模型和WC45滚动接触疲劳损伤本构模型并进行有限元分析,模型精度矫正和优化:据不含涂层除鳞辊的实际工况观察得到除鳞辊的实际寿命,根据步分析得到基材42CrMO的计算寿命,比较基材42CrMO的实际寿命和计算寿命并计算误差,获得服役寿命曲线并计算预测服役寿命。本发明具有预测精度高、使用方便和应用广泛的优势。

    摩擦损伤程度预测曲线确定、预测方法及寿命预测方法

    公开(公告)号:CN118777103A

    公开(公告)日:2024-10-15

    申请号:CN202410763405.4

    申请日:2024-06-13

    Abstract: 本发明公开了一种摩擦损伤程度预测曲线确定、预测方法及寿命预测方法,包括:首先,通过对摩擦磨损试验数据进行分析,确定机械部件涂层的磨损指标与工况参数之间的强关联关系。然后,基于与磨损指标强关联的工况参数构建起用于计算涂层磨损指标的磨损指标计算模型。之后,根据机械部件之间的相对运动关系构建起涂层摩擦磨损有限元分析模型,并结合磨损指标计算模型进行有限元分析计算,得到机械部件涂层的磨损指标仿真数据。最后,基于磨损指标仿真数据,采用曲线拟合的方法确定用于预测机械部件涂层的摩擦损失程度的摩擦损伤程度预测曲线。通过摩擦损伤程度预测曲线可精准预测机械部件的摩擦损伤程度,解决了机械零件涂镀层的服役寿命预测问题。

    一种大面积连续致密α-Al2O3障层制备方法及热障涂层性能调控方法

    公开(公告)号:CN117987758A

    公开(公告)日:2024-05-07

    申请号:CN202410159760.0

    申请日:2024-02-04

    Abstract: 本发明提供了一种大面积连续致密a‑Al2O3障层制备方法及热障涂层性能调控方法。制备方法步骤包括:基体清理,制备粉体,在基体上制备CoCrNiAlY‑YSZ‑LaMA层,离子清洗,在CoCrNiAlY‑YSZ‑LaMA层表面沉积能够形成a‑Al2O3障层的表面涂层;热障涂层性能调控方法步骤包括:在清洗后的CoCrNiAlY‑YSZ‑LaMA层表面沉积具有a‑Al2O3障层的表面涂层;所得工件置于1000℃的干燥环境中放置80小时。本发明在1000℃的条件下就能够在涂层表面形成稳定地、大面积连续致密的鱼鳞状a‑Al2O3障层,能够有效调控涂层层间交界处热生长氧化物(TGO)的连续性,使得涂层层间交界处呈密实、连续的面状结构,提供了一种全新的热障涂层性能调控方法。

    一种海绵铁生产系统及生产工艺

    公开(公告)号:CN111961783A

    公开(公告)日:2020-11-20

    申请号:CN202010750843.9

    申请日:2020-07-29

    Abstract: 本发明涉及一种海绵铁生产系统,包括依次连接的混气室、多级炉渣余热回收装置、气体收集室、还原炉,多级炉渣余热回收装置包括多个串联的炉渣余热回收室。海绵铁生产工艺,1)将甲烷和二氧化碳气体按体积1:0.8~1.5的比例通入混气室混合;2)混合后的气体经过多个多级炉渣余热回收装置反应生成还原气体;3)将还原气体收集后通入还原炉内对铁氧化物进行还原生产海绵铁。1)还原气体的制备可以利用高温炉渣的热量,不用额外消耗能源对其进行加热处理,可达到100%节约能源的效果;对高温炉渣余热进行回收,改善钢铁企业的环境,有利于钢铁企业实现利润最大化和可持续发展。

Patent Agency Ranking