-
公开(公告)号:CN105679312A
公开(公告)日:2016-06-15
申请号:CN201610125032.3
申请日:2016-03-04
Applicant: 重庆邮电大学
IPC: G10L15/02 , G10L19/02 , G10L21/0332
Abstract: 本发明请求保护一种噪声环境下声纹识别的语音信号特征处理方法,包括步骤:(1)根据语音信号的特点对其进行信号的前期处理,包括语音信号的预加重,端点检测和加窗函数的选择;(2)估算发声个体的基音周期,并以此为依据对语音信号进行谱平滑处理,得到新的谱包络,计算通过梅尔滤波器的能量,最终通过离散余弦变换(DCT)计算得到梅尔平滑系数(SFCC)。(3)结合均值消减法、方差归一化、时间序列滤波法和加权自回归移动平均滤波法对SFCC进行后处理,得到回归平衡参数(MVDA);目的是通过平滑谱包络去除个体发声的不稳定因素和通过后处理算法去除环境噪声的影响,最终降低声纹识别的误识率。
-
公开(公告)号:CN106898362B
公开(公告)日:2019-11-12
申请号:CN201710100827.3
申请日:2017-02-23
Applicant: 重庆邮电大学
Abstract: 本发明公开了一种基于核主成分分析改进Mel滤波器的语音特征提取方法包括步骤:S1,对初始输入语音信号数字化采样、预加重和分帧加窗等处理得到预处理后的语音信号;S2,根据伽马通滤波器特性计算处理后语音信号的伽马通滤波倒谱系数特征;S3,提取伽马通滤波倒谱系数的滑动差分;S4,计算预处理语音信号的基音频率;S5,根据融合公式对伽马通滤波倒谱系数、滑动差分和基音频率进行特征数据融合;S6,根据核主成分分析对数据融合后语音特征转换降维。本发明可获得更具鲁棒性的特征参数。
-
公开(公告)号:CN105679312B
公开(公告)日:2019-09-10
申请号:CN201610125032.3
申请日:2016-03-04
Applicant: 重庆邮电大学
IPC: G10L15/02 , G10L19/02 , G10L21/0332
Abstract: 本发明请求保护一种噪声环境下声纹识别的语音信号特征处理方法,包括步骤:(1)根据语音信号的特点对其进行信号的前期处理,包括语音信号的预加重,端点检测和加窗函数的选择;(2)估算发声个体的基音周期,并以此为依据对语音信号进行谱平滑处理,得到新的谱包络,计算通过梅尔滤波器的能量,最终通过离散余弦变换(DCT)计算得到梅尔平滑系数(SFCC)。(3)结合均值消减法、方差归一化、时间序列滤波法和加权自回归移动平均滤波法对SFCC进行后处理,得到回归平衡参数(MVDA);目的是通过平滑谱包络去除个体发声的不稳定因素和通过后处理算法去除环境噪声的影响,最终降低声纹识别的误识率。
-
公开(公告)号:CN106898362A
公开(公告)日:2017-06-27
申请号:CN201710100827.3
申请日:2017-02-23
Applicant: 重庆邮电大学
Abstract: 本发明公开了一种基于核主成分分析改进Mel滤波器的语音特征提取方法包括步骤:S1,对初始输入语音信号数字化采样、预加重和分帧加窗等处理得到预处理后的语音信号;S2,根据伽马通滤波器特性计算处理后语音信号的伽马通滤波倒谱系数特征;S3,提取伽马通滤波倒谱系数的滑动差分;S4,计算预处理语音信号的基音频率;S5,根据融合公式对伽马通滤波倒谱系数、滑动差分和基音频率进行特征数据融合;S6,根据核主成分分析对数据融合后语音特征转换降维。本发明可获得更具鲁棒性的特征参数。
-
-
-