基于路面感知数据智能分类的加载车行驶纠偏方法和系统

    公开(公告)号:CN114898329B

    公开(公告)日:2025-01-10

    申请号:CN202210333395.1

    申请日:2022-03-31

    Applicant: 长安大学

    Abstract: 本发明公开了一种基于路面感知数据智能分类的加载车行驶纠偏方法和系统,所述方法包括:获取来自足尺路面上多个高频传感器的待分类数据;根据足尺路面不同高频传感器数据特征构建自适应阈值,对处于加载过程中的传感器数据进行提取;将获得的多个压力感知数据片段进行可视化转换,获得对应的待分类图像数据;构建DCNN6卷积神经网络并对卷积神经网络进行训练;利用经训练的卷积神经网络模型获得待分类图像数据的分类结果;利用所述分类结果对车辆的驾驶轨迹进行提示。本发明可以有效解决足尺环道中的动态高频传感器数据自动分类问题,为全路域受力分析和把握车辙演变规律提供有力的数据支撑,且分类速度快、精度高,节省人力物力。

    基于路面感知数据智能分类的加载车行驶纠偏方法和系统

    公开(公告)号:CN114898329A

    公开(公告)日:2022-08-12

    申请号:CN202210333395.1

    申请日:2022-03-31

    Applicant: 长安大学

    Abstract: 本发明公开了一种基于路面感知数据智能分类的加载车行驶纠偏方法和系统,所述方法包括:获取来自足尺路面上多个高频传感器的待分类数据;根据足尺路面不同高频传感器数据特征构建自适应阈值,对处于加载过程中的传感器数据进行提取;将获得的多个压力感知数据片段进行可视化转换,获得对应的待分类图像数据;构建DCNN6卷积神经网络并对卷积神经网络进行训练;利用经训练的卷积神经网络模型获得待分类图像数据的分类结果;利用所述分类结果对车辆的驾驶轨迹进行提示。本发明可以有效解决足尺环道中的动态高频传感器数据自动分类问题,为全路域受力分析和把握车辙演变规律提供有力的数据支撑,且分类速度快、精度高,节省人力物力。

Patent Agency Ranking