Abstract:
To provide a hybrid power source system in which either a solar cell or a fuel cell and a secondary cell are combined with each other, and the secondary cell is used as an electric power buffer and which can maintain a high energy efficiency even when there is a change in a charging state of the secondary cell, a change in an operating condition, or a secular change in a member, prevent overcharging of the secondary cell, and suppress thermal deterioration of the solar cell or the fuel cell due to generation of a surplus electric power unable to be taken out. A hybrid power source system is composed of a solar cell module 1 or a fuel cell module, a DC/DC converter (2) which supplies a suitable voltage to a load (3) and a secondary cell (4) after converting an electric power generated by the module into the suitable voltage, the secondary cell (4), and a shunt circuit (a constant voltage diode (6) or a shunt regulator IC) which is connected in parallel with the secondary cell (4), and which, when the secondary cell (4) is substantially in a full charging state, transforms substantially all of a surplus electric power which is not consumed in the load (3), of the generated electric power, into heat to abandon the resulting heat.
Abstract:
The present invention provides a small fuel cell system including a secondary battery, in which deterioration in the secondary battery is suppressed regardless of a temperature condition. A control unit adjusts the supply amount of a liquid fluid of a fuel pump so that charging current I2 to a secondary battery becomes smaller than a predetermined maximum charging current value Imax. Consequently, for example, even in the case of using a small secondary battery, the charging current I2 is limited to be smaller than a predetermined upper limit value (maximum charging current value Imax). In addition, a temperature detecting unit detects temperature T1 of the secondary battery and the control unit controls the maximum charging current value Imax in accordance with the detected temperature T1 of the secondary battery. In such a manner, the operation of limiting the charging current I2 in accordance with the temperature T1 of the secondary battery at that time is performed.
Abstract:
A fuel cell capable of being thinned while maintaining a stable electric power supply is provided. A fuel cell includes a power generation section, a fuel tank, a fuel supply section (pump), and a fuel vaporization section. The power generation section has a structure in which a combined body is sandwiched between a cell plate and a cell plate. The combined body has a structure in which an anode electrode and a cathode electrode are oppositely arranged with an electrolyte film in between. In particular, the fuel supply section and the fuel vaporization section are integrally provided, and are connected by a nozzle section buried therein. A fuel contained in the fuel tank is pumped by the fuel supply section according to the state of the power generation section, and then is vaporized by the fuel vaporization section, and is supplied to the power generation section side.
Abstract:
A fuel cartridge with which damage or break of a valve due to miss-loading or the like is able to be avoided and safety is able to be improved, a fuel cell, and an electronic device are provided. A fitting groove for fitting to a fuel cell body is provided in a package of a fuel cartridge. Improper force applied to a valve due to inappropriate loading or the like is avoided, and possibility that the valve is damaged or broken is decreased. The valve is provided not projecting from the package. Compared to an existing structure that a valve is projecting outside of the package, the effective volume of a fuel storage space is increased even if the height of the entire cartridge is the same as that of the existing case.
Abstract:
A power supply system capable of inhibiting electricity loss and deterioration of each power supply device while realizing high stability in the case where electricity supply is performed by using a plurality of power supply devices is provided. A switching element corresponding to a power supply device having a higher inter-terminal voltage out of two power supply devices selectively becomes in ON state, and a switching element corresponding to a power supply device having a lower inter-terminal voltage selectively becomes in OFF state. Thereby, overload on a specific power supply device is prevented, and current flow between the different power supply devices is able to be prevented without generating needless electricity loss. Further, since electricity of the power supply device having a higher inter-terminal voltage is selectively outputted, variation between the respective power supply devices becomes allowable to some extent.
Abstract:
Disclosed herein is solar power-generating equipment, including: a solar cell; a secondary battery; an electric power outputting portion; a display portion configured to display thereon information about an electric-generating capacity of the solar cell, and information about a state of charge of the secondary battery; and a control portion configured to cause the display portion to display thereon the information about the electric-generating capacity of the solar cell only for a predetermined time length, and cause the display portion to display thereon the information about the state of charge of the secondary battery only for a predetermined time length.
Abstract:
A mobile device including a solar battery having a light-receiving surface provided on a casing of the mobile device, an illuminance detector that detects an illuminance of light incident on the casing, an output section that outputs a state of light incident on the light-receiving surface of the solar battery, and a controller that controls the output section based on the illuminance detected by the illuminance detector.
Abstract:
A fuel cell system that is able to perform power generation more stably than in the past regardless of external environment is provided. Based on a temperature of a power generation section detected by a temperature detection section, a supply amount of a liquid fuel from a fuel pump is adjusted, and therefore control in which the temperature of the power generation section becomes constant is performed. In addition, a fuel cell system that is able to perform power generation in a vaporization supply type fuel cell more stably than in the past is provided. A level of a power generation voltage supplied from the power generation section is raised by a boost circuit. In a control section, operation of the boost circuit is controlled using a given control table, and therefore control is performed on an output voltage and an output current supplied from the boost circuit to a load.
Abstract:
A liquid tank and a tubular structure for liquid tank capable of suctioning an internal liquid to the last drop even when the tank is tilted to any angle are provided. The tubular structure 40 has a duct line 41 extending from a specific position 41A in the tank body 30 in a direction toward apexes, sides, or faces of the tank body 30. Ends of the duct line 41 are contacted with the apexes, the sides, or the faces of the tank body 30, and have a liquid inlet 41B. Since the inlet 41B is limited to the ends of the duct line 41, flow of the liquid in the tank body 30 has a certain directivity that the liquid enters through only the inlet 41B into the duct line 41, is transported to the specific position 41A, and is suctioned outside. In the tubular structure 40, an inner structure 45 having voids thorough which the liquid passes such as a porous body is provided. The voids have an average pore diameter with which the liquid is able to be suctioned by capillary force from the inlet 41B to the specific position 41A, and thereby increase of flow path resistance is suppressed.
Abstract:
A color imaging element, a photosensor and a photoelectric transducer which use a protein and are capable of being stably used for a long time, and methods of manufacturing them are provided. A zinc-substituted cytochrome c552 is immobilized on a gold electrode with a self-assembled monolayer in between to form a blue-light photoelectric transducer. Alternatively, a cytochrome c552 is immobilized on a gold electrode with a self-assembled monolayer in between, and a fluorescent protein absorbing blue light is bonded to the cytochrome c552, thereby forming a blue-light photoelectric transducer. These photoelectric transducers each are used as a color imaging element or a blue-light photoelectric transducer of a photosensor.