Abstract:
A method for applying illumination correction for an optical computer mouse, includes: flashing a light source of the mouse directed towards a surface; accumulating voltage on a pixel array of the mouse to obtain raw pixel values of an image frame in response to detecting light reflected from the surface; applying analog correction to the raw pixel values based on digital gain coefficients to obtain an array of corrected pixel values forming corrected image data; digitizing the corrected image data with an analog-to-digital converter to obtain digital pixel values forming digital image data; and updating the digital gain coefficients so that a gain coefficient corresponding to a digital pixel value is incremented if the digital pixel value is below or equal to a given pixel threshold value, and so that the gain coefficient is decremented if the digital pixel value is above the given pixel threshold value.
Abstract:
In a sensing device of a pointing device, like a mouse, said pointing device includes at least one light source configured to illuminate a surface, at least one first secondary photodetector, at least one second secondary photodetector, and at least one primary photodetector. Each individual storage element of photodetectors is weighted and compared such as to sense a displacement of the pointing device.
Abstract:
The method is for measuring a physical parameter via an electronic circuit connected to a two differential capacitor sensor having two fixed electrodes and a common moving electrode. The circuit supplies first and second digital measuring signals. Each measuring cycle consists on biasing fixed electrodes by a first biasing and a second biasing reverse of the first biasing, alternated with biasing the electrodes by the measuring voltage based on first and second digital signals. Each conversion starts by a small step value added to or subtracted from each digital signal in each cycle. If the successive identical amplifier output states counted or counted down by a counter is higher than a threshold, a large step value is added to or subtracted from the digital signals in each cycle. Re-adaptation to the small step value occurs when a sign change is detected in the counter, until the conversion end.
Abstract:
In a method for sensing a displacement of a pointing device, like a mouse, said pointing device includes at least one light source configured to illuminate a surface, at least one first secondary photodetector, at least one second secondary photodetector, and at least one primary photodetector. Each individual value of the photodetectors is weighted and compared such as to sense said displacement of the pointing device.
Abstract:
The present invention concerns an electronic measurement circuit for measuring a physical parameter. The circuit comprises: a measurement sensor comprising two differential mounted capacitors each comprising a fixed electrode, and a common electrode, common to the two capacitors which is arranged to be movable relative to each fixed electrode of the two capacitors in order to alter the capacitive value of each capacitor when the physical parameter is measured. The circuit further comprises a first integrator unit connected to the common electrode for integrating charge received from the measurement sensor, and comprising two integrators arranged to be connected alternately to the common electrode; a second integrator unit connected to the first integrator unit for integrating charge received from the first integrator unit; a comparator for comparing analogue output values from the second integrator unit; a switch circuit connected to the measurement sensor for switching different voltage values across the two capacitors; and a feedback circuit for feeding a digital output signal of the comparator to the switch circuit for controlling the operation of the switch circuit.
Abstract:
A physical parameter is measured via an electronic circuit connected to a two capacitor sensor. The circuit includes an amplifier connected to the common capacitor electrode, a logic unit for digital processing amplifier data and supplying a digital measuring signal, a digital-analogue converter for supplying a measuring voltage based on the digital measuring signal, a switching unit for alternately supplying the measuring voltage to the first and second fixed capacitor electrodes, and a regulated voltage for negative biasing or a low voltage for positive biasing from a voltage supply source. A first phase consists in biasing the first fixed electrode with the measuring voltage from first binary word and reference voltage, and the second fixed electrode with low voltage, and a second phase consists in biasing the second fixed electrode with measuring voltage from second binary word, which is reverse of the first binary word, and the reference voltage.
Abstract:
The method is for measuring a physical parameter by an electronic circuit connected to a two differential capacitor sensor having two fixed electrodes and a common moving electrode. The electronic circuit supplies first and second digital measuring signals. Each measuring cycle consists on biasing the electrodes by the measuring voltage based on the first digital signal, connecting the fixed electrodes to a supply voltage source for a first biasing, biasing the electrodes by the measuring voltage based on the second digital measuring signal, and inversely connecting the fixed electrodes to a supply voltage source for a second biasing. In first successive measuring cycles, the first and second digital signals are adapted to each cycle by a large step value. In second successive measuring cycles, the first and second digital signals are adapted to each cycle by a small step value until the end of the conversion.
Abstract:
An embodiment of the invention relates to a method for sensing a displacement of a pointing device, like a mouse. The pointing device includes at least one light source configured to illuminate a surface, at least one first secondary photodetector, at least one second secondary photodetector and at least one primary photodetector. Each individual value of photodetectors is weighted and compared to sense the displacement of the pointing device by comparing a plurality of storage elements.
Abstract:
The present invention concerns a capacitive accelerometer for measuring an acceleration value. The accelerometer comprises: a first electrode; a second electrode; a third, mobile electrode arranged between the first and second electrodes, and forming with the first electrode a first capacitor with a first capacitance value, and with the second electrode a second capacitor with a second capacitance value, the third electrode being arranged to be displaced when the capacitive accelerometer is subject to acceleration thereby arranged to generate a capacitance difference value between the first and second capacitances transformable to electrical charges; a first voltage source and a second voltage source for selectively applying a first voltage value to the first electrode, a second voltage value to the second electrode and a third voltage value to the third electrode, and arranged to generate electrostatic forces acting on the third electrode. The first, second and/or third voltage values are arranged to be applied during electrical charge transfers for collecting the electrical charges in order to measure the acceleration. The accelerometer comprises electrostatic force compensation means for compensating missing electrostatic forces owing to a modified charge transfer rate, the amount of compensation being dependent on the modified charge transfer rate.
Abstract:
The physical parameter measurement method is performed using an electronic circuit (1) with a resistive sensor (2). The resistive sensor includes two resistors (R1, R2) mounted in series, whose connection node connected to a moving mass (M), is connected to a first input of an amplifier-comparator (3). A second input of the amplifier-comparator receives a reference voltage. One output of the amplifier-comparator is connected to a logic unit (4), which provides a digital output signal (OUT). A digital-to-analogue converter (5) provides a measurement voltage (Vdac), as a function of a digital signal provided by the logic unit, to the first resistor (R1) in a first phase of a measurement cycle, whereas the second resistor (R2) is polarized by a polarization voltage, and to the second resistor in a second phase, whereas the first resistor is polarized by a polarization voltage via a switching unit.