Abstract:
A light-emitting device includes a light body having an internal electrode layer, and a conductive layer. The conductive layer has a first portion formed on the internal electrode layer and overlapping the light body in a first direction, and a second portion overlapping the light body in a second direction. The first direction is perpendicular to the second direction.
Abstract:
A semiconductor device comprises a semiconductor die, comprising a stacking structure, a first bonding pad, and a second bonding pad on a top surface of the stacking structure, wherein a shortest distance between the first bonding pad and the second bonding pad is less than 150 μm; a carrier comprising a connecting surface; a third bonding pad and a fourth bonding pad on the connecting surface of the carrier; and a conductive connecting layer comprising a current conductive area between the first bonding pad and the third bonding pad and between the second bonding pad and the fourth bonding pad.
Abstract:
An embodiment of the present invention discloses a light-emitting device. The light-emitting device includes a light source configured to emit a first light at a first high temperature; and an optical element, distant from the light source, configured to generate a second light in response to an irradiation of the first light, and reach a second high temperature higher than the first high temperature under the irradiation of the first light.
Abstract:
A light-emitting device, having an overall color temperature when emitting light, includes a carrier, a first LED unit, and a second LED unit. The carrier has a circuit. The first LED unit is arranged on the carrier and has a first color temperature. The second LED unit is spaced apart from the first LED unit by a space, and electrically connected to first LED unit and the circuit. The first LED unit and the second LED unit, and each includes a light-emitting body and a wavelength conversion layer covering the light-emitting body. The first color temperature is different from the overall color temperature.
Abstract:
This disclosure discloses an illumination apparatus. The illumination apparatus comprises a cover comprising a second portion and a first portion, and a light source disposed within the cover. An average thickness of the first portion is greater than that of the second portion.
Abstract:
A light-emitting module includes a common carrier; a plurality of semiconductor devices formed on the common carrier, and each of the plurality of semiconductor devices including three semiconductor dies; a carrier including a connecting surface; a third bonding pad and a fourth bonding pad formed on the connecting surface; and a connecting layer. One of the three semiconductor dies includes a stacking structure; a first bonding pad; and a second bonding pad with a shortest distance less than 150 microns between the first bonding pad. The connecting layer includes a first conductive part including a first conductive material having a first shape; and a blocking part covering the first conductive part and including a second conductive material having a second shape with a diameter in a cross-sectional view. The first shape has a height greater than the diameter.
Abstract:
A light-emitting device includes a light-emitting structure with a side surface, and a reflective layer covering the side surface. The light-emitting structure has a first light-emitting angle and a second light-emitting angle. The difference between the first light-emitting angle and the second light-emitting angle is larger than 15°.
Abstract:
A light-emitting device includes a light-emitting structure with a side surface, and a reflective layer covering the side surface. The light-emitting structure has a first light-emitting angle and a second light-emitting angle. The difference between the first light-emitting angle and the second light-emitting angle is larger than 15°.
Abstract:
An embodiment of the present invention discloses a light-emitting device including a first light source, a second light source, and an optical element. The first light source is configured to emit a first light at a first low temperature and a first high temperature, and has a first hot/cold factor. The second light source is configured to emit a second light at the first low temperature and the first high temperature, and has a second hot/cold factor. The optical element is configured to generate a third light by the excitation of the first light, and reach a second high temperature higher than the first high temperature under the irradiation of the first light.
Abstract:
Disclosed is a light-emitting device comprising: a carrier; a light-emitting element disposed on the carrier; a first light guide layer covering the light-emitting element; a second light guide layer covering the first light guide layer; a low refractive index layer between the first light guide layer and the second light guide layer to reflect the light from the second light guide layer; and a wavelength conversion layer covering the second light guide layer; wherein the low refractive index layer has a refractive index smaller than one of the refractive indices of first light guide layer and the second light guide layer.