Abstract:
Example embodiments may facilitate altitude control by a balloon in a balloon network. An example method involves: (a) causing a balloon to operate in a first mode, wherein the balloon comprises an envelope, a high-pressure storage chamber, and a solar power system, (b) while the balloon is operating in the first mode: (i) operating the solar power system to generate power for the balloon and (ii) using at least some of the power generated by the solar power system to move gas from the envelope to the high-pressure storage chamber such that the buoyancy of the balloon decreases; (c) causing the balloon to operate in a second mode; and while the balloon is operating in the second mode, moving gas from the high-pressure storage chamber to the envelope such that the buoyancy of the balloon increases.
Abstract:
The present disclosure provides a balloon. The balloon may include an envelope comprising a fixed component. The balloon may include a stabilizing platform positioned beneath the envelope and operatively connected to the fixed component. The stabilizing platform may be configured to rotate around an axis vertically aligned with gravity. The envelope may comprise a heavier mass than the stabilizing platform. The balloon may also include a motor configured to exert a first force on the stabilizing platform in a manner such that the stabilizing platform rotates (i) more than a rotation of the balloon and (ii) around the axis, thereby counteracting the rotation of the balloon by causing the stabilizing platform to exert a second force on the envelope of the balloon.
Abstract:
A balloon having a balloon envelope that is fillable with a first lifting gas, a top plate arranged at a top of the balloon envelope, an outlet port that provides a passageway from an inside of the balloon envelope to the atmosphere, an inner bladder positioned within the balloon envelope and positioned at the top of the balloon envelope and coupled to the top plate, wherein the inner bladder is fillable with a second lifting gas, wherein the outlet port is configured to vent the first lifting gas to the atmosphere while keeping the second lifting gas in the inner bladder.
Abstract:
Example embodiments may facilitate altitude control by a balloon in a balloon network. An example method involves: (a) causing a balloon to operate in a first mode, wherein the balloon comprises an envelope, a high-pressure storage chamber, and a solar power system, (b) while the balloon is operating in the first mode: (i) operating the solar power system to generate power for the balloon and (ii) using at least some of the power generated by the solar power system to move gas from the envelope to the high-pressure storage chamber such that the buoyancy of the balloon decreases; (c) causing the balloon to operate in a second mode; and while the balloon is operating in the second mode, moving gas from the high-pressure storage chamber to the envelope such that the buoyancy of the balloon increases.
Abstract:
Embodiments relate to a marketplace for inter-network links between a balloon network and a terrestrial data network. An example method may involve a computer-based purchasing agent: (i) determining a demand for inter-network bandwidth between a balloon network and a terrestrial data network, (ii) determining one or more offers to provide an inter-network link, wherein the inter-network link provides inter-network bandwidth between the balloon network and the terrestrial data network, and wherein each offer is associated with a corresponding client device, (iii) based at least in part on a comparison of: (a) the demand for inter-network bandwidth and (b) the one or more offers to provide an inter-network link, selecting one or more of the offers to provide an inter-network link, and (iv) initiating a process to establish an inter-network link at each client device that corresponds to one of the one or more selected offers.
Abstract:
A balloon having an envelope, a gas contained within the envelope, a payload connected to the envelope, wherein the envelope has a first portion that has a first absorptive or reflective property with respect to allowing solar energy to be transferred to the gas within the envelope, and a second portion that has a second absorptive or reflective property with respect to allowing solar energy to be transferred to the gas within the envelope where the second absorptive or reflective property is different than the first absorptive or reflective property, wherein the second portion is provided with a darkly colored surface that allows more solar energy to be transferred through the envelope to the gas within the envelope than the first portion, and wherein the envelope is rotatable to allow a preferred ratio of the first and second portions of the envelope to be positioned facing the sun.
Abstract:
Disclosed embodiments may help an aerial vehicle network to provide substantially continuous service in a given geographic area. An example method may be carried out at an aerial vehicle that is at a location associated with the first geographic area in an aerial network that includes a plurality of geographic areas. The balloon may determine that it should update its vehicle-state in accordance with a vehicle-state profile for the first geographic area. Then, in response, the balloon may determine the vehicle-state profile for the first geographic area, which may include one or more state parameters for balloons operating in the first geographic area. The balloon may then operate according to the vehicle-state profile for the first geographic area.
Abstract:
This disclosure relates to the use of a method for adjusting an altitude of variable-buoyancy vehicle, such as an aerostatic balloon. The method includes determining a target mass for a variable-buoyancy vehicle, where the target mass is based on a target altitude for the variable-buoyancy vehicle. Additionally, the method includes adding a first mass to the variable-buoyancy vehicle. The mass added is less than a difference between the target mass and a current mass. The method also includes adding a second mass to the variable-buoyancy vehicle in response to a decrease in an internal pressure of the variable-buoyancy vehicle caused by adding the first mass. Further, adding the second mass makes a current mass of the variable-buoyancy vehicle approximately equal to the target mass.
Abstract:
A vehicle-based airborne wind turbine system having an aerial wing, a plurality of rotors each having a plurality of rotatable blades positioned on the aerial wing, an electrically conductive tether secured to the aerial wing and secured to a ground station positioned on a vehicle, wherein the aerial wing is adapted to receive electrical power from the vehicle that is delivered to the aerial wing through the electrically conductive tether; wherein the aerial wing is adapted to operate in a flying mode to harness wind energy to provide a first pulling force through the tether to pull the vehicle; and wherein the aerial wing is also adapted to operate in a powered flying mode wherein the rotors may be powered so that the turbine blades serve as thrust-generating propellers to provide a second pulling force through the tether to pull the vehicle
Abstract:
An antenna includes a radiator and a reflector and has a radiation pattern that is based at least in part on a separation distance between the radiator and the reflector. The antenna includes a linkage configured to adjust the separation distance based at least in part on the altitude of the antenna. The resulting radiation pattern can be dynamically adjusted based on altitude of the antenna such that, while the antenna is aloft and the antenna is ground-facing, variations in geographic boundaries and intensity of the radiation received at ground level are at least partially compensated for by the dynamic adjustments to the radiation pattern.