Abstract:
A device for fluorescence-based imaging and monitoring of a target is provided. The device includes a light source emitting light for illuminating the target, the emitted light including at least one wavelength or wavelength band causing at least one biomarker associated with the target to fluoresce, and a light detector for detecting the fluorescence.
Abstract:
A device for fluorescence-based imaging and monitoring of a target is provided. The device includes a light source emitting light for illuminating the target, the emitted light including at least one wavelength or wavelength band causing at least one biomarker associated with the target to fluoresce, and a light detector for detecting the fluorescence.
Abstract:
A system for outputting a representation of a wound in tissue comprises a housing configured to removably receive at least a portion of a wireless communication device. At least one light source coupled to the housing is configured to emit excitation light to illuminate a target which includes at least a portion of the wound. A power supply contained in the housing is configured to provide power to the light source. A non-transitory computer-readable medium stores a program executable to cause the performance of operations comprising detecting signals responsive to illumination of the target, outputting the representation of the target based thereon, storing data relative to one or more target surface parameter based on the detected signals, and displaying the representation. The signals correspond to at least one of endogenous or exogeneous fluorescence, absorbance, and reflectance from at least one biological component in and/or on the target.
Abstract:
A portable imaging system for visualizing bacteria in a wound in real time includes an excitation light source configured to emit violet and/or blue excitation light to illuminate a wound and cause at least one biomarker associated with the wound to fluoresce and a camera configured to detect fluorescence emitted by the at least one biomarker associated with the wound in response to illumination of the wound with the excitation light. A portable frame is configured to support the camera and the excitation light source for hands-free operation and to position the camera and the excitation light source relative to the wound. The system also includes a power source for the excitation light source.
Abstract:
A method of visualizing bacteria in real time includes positioning a portable frame of a portable imaging system relative to a target, wherein the portable imaging system includes a camera and an excitation light source mounted on the portable frame, operating the portable imaging system in a hands-free manner to illuminate the target with excitation light having at least one wavelength to cause at least one biomarker associated with the target to fluoresce and to detect fluorescence of the at least one biomarker with the camera.
Abstract:
A device for fluorescence-based imaging and monitoring of a target is provided. The device includes a light source emitting light for illuminating the target, the emitted light including at least one wavelength or wavelength band causing at least one biomarker associated with the target to fluoresce, and a light detector for detecting the fluorescence.
Abstract:
A system for acquiring data regarding a wound in tissue comprises at least one light source configured to directly illuminate a target surface with a homogeneous field of excitation light. An optical sensor is configured to detect signals responsive to illumination of an illuminated portion of a wound and the area around the wound. A thermal sensor is configured to detect thermal information regarding the illuminated portion of the wound and the area around the wound. A processor receives the detected signals and the detected thermal information and outputs data regarding the illuminated portion of the wound and the area around the wound. The output data may include wound size of the illuminated portion of the wound, bacterial load of the illuminated portion of the wound, or at least one temperature associated with the illuminated portion of the wound and the area around the wound. The data output by the processor may be displayed on a display of the system.
Abstract:
A system for acquiring data regarding a wound in tissue comprises at least one excitation light source configured to directly illuminate a wound with excitation light; a spectral filtering mechanism configured to permit passage of optical signals responsive to illumination of the wound and having at least one wavelength corresponding to bacterial, fungal, and/or other microorganism autofluorescence and/or bacterial, fungal, viral, and/or microbial fluorescence, the spectral filtering mechanism including a plurality of selectable filters respectively corresponding to different discrete spectral bandwidths; an optical sensor configured to detect the spectrally filtered signals; and a processor configured to receive the detected, filtered signals and to identify a fluorescent signature of bacteria in the wound based at least in part on the detected, filtered signals and to output data regarding the bacterial, fungal, viral, and/or microbial fluorescent signature.
Abstract:
A system for acquiring data regarding a wound in tissue comprises at least one light source configured to directly illuminate a target surface with a homogeneous field of excitation light. An optical sensor is configured to detect signals responsive to illumination of an illuminated portion of a wound and the area around the wound. A thermal sensor is configured to detect thermal information regarding the illuminated portion of the wound and the area around the wound. A processor receives the detected signals and the detected thermal information and outputs data regarding the illuminated portion of the wound and the area around the wound. The output data may include wound size of the illuminated portion of the wound, bacterial load of the illuminated portion of the wound, or at least one temperature associated with the illuminated portion of the wound and the area around the wound. The data output by the processor may be displayed on a display of the system.
Abstract:
A portable, handheld device for fluorescence-based imaging is provided. The device comprises a wireless communication device having a sensor configured to detect optical signals. The device further comprises an assembly configured to receive and secure the wireless communication device therein. The assembly includes a housing, at least one light source coupled to the housing, a power supply, and an optical filter holder coupled to the housing and configured to receive one or more optical filters. An endoscope portion of the device is positioned relative to the sensor to visualize at least a portion of a confined anatomical space and to receive optical signals from a visualized, illuminated portion of a target positioned within the confined anatomical space. A processor of the device includes image analysis software and is configured to produce a composite representation of the illuminated portion of the target positioned within the confined anatomical space.