Abstract:
The present application provides a detection method of a crease degree of a screen and a visual detection device, the detection method includes: providing detection rays and obliquely irradiating the detection rays onto a surface to be measured of a folding screen; acquiring detection rays reflected by the surface to be measured of the folding screen to obtain a corresponding light source reflection image; analyzing the light source reflection image to obtain an evaluation index of an crease degree of the folding screen; and evaluating the crease degree of the folding screen.
Abstract:
In a method of inspection of a semiconductor substrate a first beam of light is split into two or more second beams of light. The two or more second beams of light are respectively transmitted onto a first set of two or more first locations on top of the semiconductor substrate. In response to the transmitted two or more second beams of light, two or more reflected beams of light from the first set of two or more first locations are received. The received two or more reflected beams of light are detected to generate two or more detected signals. The two or more detected signals are analyzed to determine whether a defect exists at the set of the two or more first locations.
Abstract:
A reflection property measuring device comprising illumination light and reflected light polarizing plates held by a holder in a mutually superposed state in a thickness direction thereof, wherein the holder has a fittingly-holding portion for setting a held posture, and each of the polarizing plates has a fitting portion fittable to the fittingly-holding portion. The fitting portions of the polarizing plates are provided at positions allowing the polarizing plates to be held by the holder in respective postures where polarizing directions thereof intersect orthogonally. A manufacturing method is disclosed for polarizing plates used in the device, wherein the illumination light and reflected light polarizing plates are manufactured in such a manner as to be punched out from the same polarizing plate material.
Abstract:
A structured illumination device includes: a diffraction unit that diffracts light beams of a plurality of wavelengths that are emitted simultaneously or sequentially by a light source into a plurality of diffracted beams; and an optical system that forms interference fringes on a surface of a sample using the plurality of diffracted beams diffracted by the diffraction unit, the optical system including a first optical system and a second optical system that focuses the plurality of diffracted beams at positions on or near a pupil plane of the first optical system, and a magnification characteristic dY(λ) of the second optical system satisfying the condition of (fo·nw−afλ/P)≦dY(λ)≦(fo·NA−afλ/P), where a=1 (for M=1, 2) or a=2 (for M=3).
Abstract:
The disclosed device, which, using an electron microscope or the like, minutely observes defects detected by an optical appearance-inspecting device or an optical defect-inspecting device, can reliably insert a defect to be observed into the field of an electron microscope or the like, and can be a device of smaller scale. The electron microscope, which observes defects detected by an optical appearance-inspecting device or an optical defect-inspecting device, has a configuration incorporating an optimal microscope that re-detects defects, and a spatial filter and a distribution polarization element are inserted at the pupil plane when making dark-field observations using this optical microscope. The electron microscope, which observes defects detected by an optical appearance-inspecting device or an optical defect-inspecting device, has a configuration incorporating an optimal microscope that re-detects defects, and a distribution filter is inserted at the pupil plane when making dark-field observations using this optical microscope.
Abstract:
A spectrometer (100) for analyzing the spectrum of an upstream light beam (1), includes an entrance slit (101) and collimating elements (110) suitable for generating, from the upstream light beam, a collimated light beam (10), characterized in that it also includes: a polarization-dependent diffraction grating (120) suitable for diffracting, at each wavelength (11, 12) of the spectrum of the upstream light beam, the collimated light beam into a first diffracted light beam (11, 12) and a second diffracted light beam (21, 22); optical recombining elements (130) including a planar optical reflecting surface (130) perpendicular to the grating and suitable for deviating at least the second diffracted light beam; and focussing elements (140) suitable for focussing, at each wavelength, the first diffracted light beam and the second diffracted light beam onto one and the same focussing area (141).
Abstract:
The present invention belongs to a technical field of optical microscopic imaging and spectral measurement, and discloses a laser differential confocal mapping-spectrum microscopic imaging method and device. The core concept of the present invention is to combine the differential confocal detection and the spectrum detection techniques and use a dichroic beam splitting system (13) to separate the Rayleigh light for geometric position detection from the Raman scattering light for spectrum detection, by mean of the property that the zero-cross point of the differential confocal curve (43) accurately corresponds to the focus of the objective, the spectral information at focus of the excitation spot being accurately captured by the zero trigger to accomplish the spectrum detection with high spatial resolution. Therefore, the present invention provides a method and device that may be able to accomplish the spectrum detection with high spatial resolution to a micro-area of a sample.
Abstract:
According to one embodiment, a defect inspection device includes a first beam splitter configured to branch light into a first optical path and a second optical path, a first optical system on the first optical path, a second optical system on the second optical path, a first aperture configured to form an illumination field of an inspection sample by light from the first optical system, a second aperture configured to form an illumination field of the inspection sample by light from the second optical system, and a third optical system configured to illuminate, with a first illumination, an image of the first aperture on a first area of the inspection sample, and to illuminate, with a second illumination, an image of the second aperture on a second area of the inspection sample.
Abstract:
An analysis system includes a moveable focusing lens, a laser (typically an eye safe laser) having an output directed at the focusing lens, and a spectrometer outputting intensity data from a sample. A controller system is responsive to the spectrometer and is configured to energize the laser, process the output of the spectrometer, and adjust the position of the focusing lens relative to the sample until the spectrometer output indicates a maximum or near maximum intensity resulting from a laser output focused to a spot on the sample.
Abstract:
The disclosed device, which, using an electron microscope or the like, minutely observes defects detected by an optical appearance-inspecting device or an optical defect-inspecting device, can reliably insert a defect to be observed into the field of an electron microscope or the like, and can be a device of smaller scale. The electron microscope, which observes defects detected by an optical appearance-inspecting device or an optical defect-inspecting device, has a configuration incorporating an optimal microscope that re-detects defects, and a spatial filter and a distribution polarization element are inserted at the pupil plane when making dark-field observations using this optical microscope. The electron microscope, which observes defects detected by an optical appearance-inspecting device or an optical defect-inspecting device, has a configuration incorporating an optimal microscope that re-detects defects, and a distribution filter is inserted at the pupil plane when making dark-field observations using this optical microscope.