Abstract:
An electronic device may have a display such as a liquid crystal display. The display may have multiple layers of material such as a color filter layer and a thin-film transistor layer. An opaque masking layer may be formed on a display layer such as the color filter layer. In an inactive portion of the display, the opaque masking layer may form a rectangular ring that serves as a border region surrounding a rectangular active portion of the display. In the active portion of the display, the opaque masking layer may be patterned to from an opaque matrix that separates color filter elements in an array of color filter elements. The opaque masking layer and color filter elements may be formed from polymers such as photoresist. The opaque masking layer may include a black pigment such as carbon black. Color filter elements and opaque masking material may include multiple sublayers.
Abstract:
A vertical capacitor-less DRAM cell is described, including: a source layer having a first conductivity type, a storage layer disposed on the source layer and having a second conductivity type, an active layer disposed on the storage layer and having the first conductivity type, a drain layer disposed on the active layer and having the second conductivity type, an address gate disposed beside the active layer and separated from the same by a first gate dielectric layer, and a storage gate disposed beside the storage layer and separated from the same by a second gate dielectric layer. The DRAM cell can be written by turning on the MOSFET formed by the storage layer, the active layer, the drain layer, the first gate dielectric layer and the address gate to inject carriers into the storage layer from the active layer.
Abstract:
A pixel array is located on a substrate and includes a plurality of pixel sets. Each of the pixel sets includes a first scan line, a second scan line, a data line, a data signal transmission line, a first pixel unit, and a second pixel unit. The data line is not parallel to the first and the second scan lines. The data signal transmission line is disposed parallel to the first and the second scan lines and electrically connected to the data line. Distance between the first and the second scan lines is smaller than distance between the data signal transmission line and one of the first and the second scan lines. The first pixel unit is electrically connected to the first scan line and the data line. The second pixel unit is electrically connected to the second scan line and the data line.
Abstract:
The present invention discloses a flat display device and a manufacture method thereof. The flat display device includes a flat display module, a front cover, an auxiliary support, a back cover set, and a circuit board. The back cover set includes a sub-cover and a main back cover, wherein the circuit board is disposed on the inner surface of the sub-cover. The front cover has a display opening for an active area of the flat display module to be exposed outside the display opening and present images through the display opening. The main back cover includes a opening for part of the sub-cover to pass through and be exposed outside the opening.
Abstract:
Embodiments of the present disclosure relate to display devices and electronic devices incorporating a data line distribution segment between neighboring pixel electrodes. Specifically, embodiments of the present disclosure employ a uniformly distributed data line distribution segment coupled to a data line so as to cause a substantially uniform data line-to-pixel electrode capacitance with the neighboring pixel electrodes even when the data line is disposed closer to one of the neighboring pixel electrodes than the other.
Abstract:
An adjustable wrench has a wrench body, a clamping element and a ratcheting jaw. The wrench body has a handle, a head and a thumbscrew. The head is formed on a front end of the handle and has a connecting block, a fixed jaw, a curved slot, a positioning pin, a mounting recess and a sliding slot. The clamping element is movably connected to the wrench body and has a rear end, a front end, a sliding bar and a movable jaw. The sliding bar is formed on the rear end of the clamping element, is mounted in the sliding slot and engages the thumbscrew and has multiple teeth. The ratcheting jaw is a curved block capable of sliding forward and retracting backward inside the curved slot and has a backward area, a forward area, a guide hole, an engaging surface, an abutting surface, an engaging protrusion and a spring.
Abstract:
A personal service menu construction system is provided for an application software to construct a homemade function menu, including: a selection module for setting required function options from a plurality of function options of the application software; an integration module for receiving the function options set by the selection module such that the function options set by the selection module are edited or packaged and integrated as a personal service menu; and a construction module for inputting the personal service menu to the application software. A personal service menu provision method is provided such that the personal service menu can be saved in a storage device and inputted to the same application software of another electronic device.
Abstract:
Methods and devices employing in-cell and/or on-cell touch sensor components, including in-cell and/or on-cell black matrix material that also may serve as a touch drive or sense electrode, are provided. In one example, an electronic display may include a lower substrate, an upper substrate, and a black matrix material that shields light between pixels of the electronic display. At least a portion of the black matrix material may form all or part of a component of a touch sensor of the electronic display.
Abstract:
A semiconductor structure of a display device and the method for fabricating the same are provided. The semiconductor structure is formed on a substrate having a TFT region and a pixel capacitor region thereon. A TFT, including a gate electrode, a source electrode, a drain electrode, a channel layer, and a gate insulating layer, is formed on the TFT region of the substrate. A pixel capacitor is formed on the pixel capacitor region, wherein the pixel capacitor comprises a bottom electrode formed on a bottom dielectric layer, an interlayer dielectric layer formed on the bottom electrode, a top electrode formed on the interlayer dielectric layer, a contact plug passing through the interlayer dielectric layer and electrically connected to the top and bottom electrodes, a capacitor dielectric layer formed on the top electrode, a transparent electrode formed on the capacitor dielectric layer and electrically connected to the drain electrode.
Abstract:
The present disclosure generally provides for a variety of multi-domain pixel configurations that may be implemented in the unit pixels of an LCD display device, such as a fringe field switching LCD display panel. An LCD display device utilizing one or more of the presently disclosed techniques disclosed herein may exhibit improved display properties, such as viewing angle, color shift, and transmittance properties, relative to those exhibited by conventional multi-domain designs.