Abstract:
Driver device and a corresponding driving method for driving a load, in particular an LED assembly comprising one or more LEDs. To provide a better performance, better cost-efficiency, improved power factor and reduced losses, a driver device (1,1′, 2, 2′) is provided comprising a rectifier unit (10) for rectifying a received AC supply voltage (VS), load terminals (20) for providing a drive voltage (VL) and/or a drive current (IL) for driving said load, a capacitive storage unit (30) coupled between said rectifier unit and said load terminals for storing electrical energy provided by said rectifier unit and providing electrical energy to said load, and a bridge switching unit (40) coupled between said rectifier unit and said load for switching said capacitive storage unit into a load current path from said rectifier unit to said load terminals with a desired polarity and for switching said capacitive storage unit out of said load current path.
Abstract:
A pen which is able to modulate the trace of the pen in response to a sensory signal of the user, such as for example skin conductance or respiration. The sensory signals represent the mood of the user. By changing the trace of the pen, a change in mood of the user can be expressed.
Abstract:
A lighting device comprising a plurality of light emitting elements (1), and a beam shaping optics (7) having an entrance aperture (6). Each light emitting element is optically connected to a set of optical fibers (5) each having a first end optically connected to the light emitting element and a second end optically connected to the entrance aperture (6), so as to guide collimated light from the light emitting element to the beam shaping optics (7). The light emitting elements are distributed over an area larger than the entrance aperture (6).
Abstract:
A system for detecting at least one contamination species in an interior space of a lithographic apparatus, including: at least one monitoring surface configured to be in contact with the interior space, a thermal controller configured to control the temperature of the monitoring surface to at least one detection temperature, and at least one detector configured to detect condensation of the at least one contamination species onto the monitoring surface.
Abstract:
A device is disclosed for wireless control of color of light emitted by a lighting system. The lighting system comprises signal receiving means and means for adjusting the color of light emitted from at least one lighting element, in response to a received color control signal from the device. The device for wireless control comprises means for—generating color information data, said data being indicative of a desired color of light to be emitted by the lighting system, means for modulating a first carrier signal in accordance with the color information data, and means for transmitting said color control signal in the form of a beam of said first modulated carrier signal to the lighting system.
Abstract:
The present invention is related to a process for providing an assembly of cell microcarriers, comprising the steps of providing planar, two-dimensional objects having two sides (“flakes”), wherein these objects comprise a material which, upon application of an extrinsic stimulus, is transferred from the planar state into a rolled state, providing cells on one side of said flakes (“cell-bearing side”), transferring the flakes from the planar state into a rolled state (“cell wrap”) by application of said extrinsic stimulus, and coupling at least one type of binding agent to the flakes.
Abstract:
The application is directed to a sensor element for use in a magnetochemical sensor, which comprises a first gel-like material (10), especially a swellable hydrogel such as polyacrylamide, and a magnetic second material (20) in the form of particles, especially magnetite (Fe304) nanoparticles, embedded in the first material along with a receptor for an alalyte, eg glucose. Changes in magnetic field due to interaction with the analyte are detected with GMR element (50). Applications include biosensors, DNA testing devices, and high throughput screening.
Abstract:
The present invention relates to a bio chip for fractionating and detecting analytes, such as proteins, protein-complexes, metabolites, glycoproteins, peptides, DNA, RNA, lipids, fatty acids, carbohydrates and/or other ampholytes.
Abstract:
The present invention is related to a method for the production of cell sheets comprising at least two different cell types, said method comprising the steps of providing a continuous cell sheet which is disposed on a substrate comprising shape transition properties and/or alterable surface characteristics; exposing said continuous cell sheet to a releasing agent in a patterned fashion; washing the cell sheet after exposure to the releasing agent in order to remove cells which have been affected by the releasing agent, and repopulating the gaps remaining after the cells which have been affected by the releasing agent have been removed with a second cell type.
Abstract:
The invention relates to phase-separated composite for microfluidic applications, whereby the polymerization/phase separation is performed in such a way that a top-layer of a certain ratio to the height of the composite is achieved in order to ensure the stability of the composite.