Abstract:
The present teachings include a process, system and article for forming a printed image on a textile. The process includes coating the solution of an orthosilicate to form a silica network on the textile. The process includes applying an ink composition to the textile having the silica network on the textile, forming an image.
Abstract:
An ink composition including at least one curable monomer; at least one gellant; an optional photoinitiator; and an optional colorant; wherein the ink composition has a viscosity of less than 106 centipoise at a temperature of from about 20° C. to about 40° C.; and wherein the ink composition has the characteristics of being both ink jettable and pinnable at a temperature of from about 20° C. to about 40° C.
Abstract:
A curable ink composition for forming a three-dimensional (3D) object via a digital additive manufacturing system is provided. The composition may comprise greater than about 30 weight % of one or more oligomers, at least two monomers comprising a lowest viscosity monomer and a highest viscosity monomer, one or more photoinitiators, and optionally, one or more additives. The ratio of the weight % of the total amount of oligomers to the weight % of the total amount of monomers may be at least about 0.5 and the ratio of the weight % of the lowest viscosity monomer to the weight % of the highest viscosity monomer may be at least about 5.
Abstract:
UV-curable interlayer compositions are provided. An interlayer composition may contain a polyallyl isocyanurate compound, an ester of β-mercaptopropionic acid, a monofunctional (meth)acrylate monomer having one or more cyclic groups, and a photoinitiator. Processes of using the interlayer compositions to form multilayer structures and the multilayer structures are also provided.
Abstract:
A support material for use in additive manufacturing includes greater than about 30 weight percent up to about 70 weight percent of a C12 to C18 fatty alcohol ethoxylate and about 30 weight percent to about 70 weight percent of a C16 to C22 fatty alcohol, a transition temperature measured as the temperature immediately before phase change, based on viscosity measurement, is less than about 65° C. A system for additive manufacturing includes such a support material and a build material, the ratio of C12 to C18 fatty alcohol ethoxylate to C16 to C22 fatty alcohol is selected for property matching of the support material to the build material. A method of additive manufacturing includes providing such a system and printing via an inkjet printer the support material and the build material to provide a precursor to a three-dimensional printed article.
Abstract:
A curable phase change gellant ink composition including a phase change ink vehicle comprising at least one acrylate monomer, oligomer, or prepolymer; acryloylmorpholine; at least one gellant, wherein the gellant is miscible with the phase change ink vehicle; a photoinitiator; and an optional colorant.
Abstract:
The present disclosure provides an electron beam ink comprising a radiation curable material selected from the group consisting of a curable monomer, a curable oligomer, and mixtures thereof; and a surfactant, which is suitable for use in an indirect printing method. The present disclosure also provides a method of printing using an electron beam curable ink.
Abstract:
An embodiment of the present disclosure is directed to an amorphous bis-urea compound having a formula 1: where X is a branched alkyl bridge and R′ and R″ are alkyl groups.
Abstract:
A low viscosity and a high loading silver nanoparticle conductive ink having at least about 50% weight of silver nanoparticles, a solvent having a viscosity equal to or less than about 1 cps, and a stabilizer. The conductive ink has a viscosity of less than about 5 cps and is suitable for an ultrasonic sprayer printing ink.
Abstract:
The disclosure provides amorphous materials comprising mixtures of ester of tartaric acid and ester of citric acid, which are suitable for phase change inks.