Abstract:
A semiconductor device has a semiconductor die mounted to a carrier. An encapsulant is deposited over the semiconductor die and carrier. The carrier is removed. A first insulating layer is formed over a portion of the encapsulant within an interconnect site outside a footprint of the semiconductor die. An opening is formed through the first insulating layer within the interconnect site to expose the encapsulant. The opening can be ring-shaped or vias around the interconnect site and within a central region of the interconnect site to expose the encapsulant. A first conductive layer is formed over the first insulating layer to follow a contour of the first insulating layer. A second conductive layer is formed over the first conductive layer and exposed encapsulant. A second insulating layer is formed over the second conductive layer. A bump is formed over the second conductive layer in the interconnect site.
Abstract:
A flip chip semiconductor device has a substrate with a plurality of active devices formed thereon. A passive device is formed on the substrate by depositing a first conductive layer over the substrate, depositing an insulating layer over the first conductive layer, and depositing a second conductive layer over the insulating layer. The passive device is a metal-insulator-metal capacitor. The deposition of the insulating layer and first and second conductive layers is performed without photolithography. An under bump metallization (UBM) layer is formed on the substrate in electrical contact with the plurality of active devices. A solder bump is formed over the UBM layer. The passive device can also be a resistor by depositing a resistive layer over the first conductive layer and depositing a third conductive layer over the resistive layer. The passive device electrically contacts the solder bump.
Abstract:
A semiconductor wafer contains a plurality of semiconductor die separated by a saw street. An insulating layer is formed over the semiconductor wafer. A protective layer is formed over the insulating layer including an edge of the semiconductor die along the saw street. The protective layer covers an entire surface of the semiconductor wafer. Alternatively, an opening is formed in the protective layer over the saw street. The insulating layer has a non-planar surface and the protective layer has a planar surface. The semiconductor wafer is singulated through the protective layer and saw street to separate the semiconductor die while protecting the edge of the semiconductor die. Leading with the protective layer, the semiconductor die is mounted to a carrier. An encapsulant is deposited over the semiconductor die and carrier. The carrier and protective layer are removed. A build-up interconnect structure is formed over the semiconductor die and encapsulant.
Abstract:
A semiconductor substrate has a plurality of different size recesses formed in the substrate to provide a stepped interposer. A conductive via can be formed through the stepped interposer. An insulating layer follows a contour of the stepped interposer. A conductive layer is formed over the insulating layer following the contour of the stepped interposer. A first semiconductor die is partially disposed in a first recess and electrically connected to the conductive layer. A second semiconductor die is partially disposed in a second recess and electrically connected to the conductive layer. The first semiconductor die is electrically connected to the second semiconductor die through the conductive layer. The first and second semiconductor die can be flipchip type semiconductor die. An encapsulant is deposited over the first and second semiconductor die. A portion of the stepped interposer can be removed to reduce thickness.
Abstract:
A semiconductor device is made with a conductive via formed through a top-side of the substrate. The conductive via extends vertically through less than a thickness of the substrate. An integrated passive device (IPD) is formed over the substrate. A plurality of first conductive pillars is formed over the first IPD. A first semiconductor die is mounted over the substrate. An encapsulant is formed around the first conductive pillars and first semiconductor die. A second IPD is formed over the encapsulant. An interconnect structure is formed over the second IPD. The interconnect structure operates as a heat sink. A portion of a back-side of the substrate is removed to expose the first conductive via. A second semiconductor die is mounted to the back-side of the substrate. The second semiconductor die is electrically connected to the first IPD and first semiconductor die through the conductive via.
Abstract:
A semiconductor device has a TSV semiconductor wafer with a cavity formed in a first surface of the wafer. A second cavity can be formed in a second surface of the wafer. A plurality of semiconductor die is mounted within the cavities. The semiconductor die can be mounted side-by-side and/or stacked within the cavity. Conductive TSV can be formed through the die. An encapsulant is deposited within the cavity over the die. A CTE of the die is similar to a CTE of the encapsulant. A first interconnect structure is formed over a first surface of the encapsulant and wafer. A second interconnect structure is formed over a second surface of the encapsulant and wafer. The first and second interconnect structure are electrically connected to the TSV wafer. A second semiconductor die can be mounted over the first interconnect structure with encapsulant deposited over the second die.
Abstract:
A method of manufacturing a semiconductor device includes providing a substrate having a first conductive layer disposed on a top surface of the substrate. A high resistivity layer is formed over the substrate and the first conductive layer. A dielectric layer is deposited over the substrate, first conductive layer and high resistivity layer. A portion of the dielectric layer, high resistivity layer, and first conductive layer forms a capacitor stack. A first passivation layer is formed over the dielectric layer. A second conductive layer is formed over the capacitor stack and a portion of the first passivation layer. A first opening is etched in the dielectric layer to expose a surface of the high resistivity layer. A third and fourth conductive layer is deposited over the first opening in the dielectric layer and a portion of the first passivation layer.
Abstract:
A method of making a wafer level chip scale package includes providing a temporary substrate, and forming a wafer level interconnect structure over the temporary substrate using wafer level processes. The wafer level processes include forming a first insulating layer in contact with an upper surface of the temporary substrate, and forming a first conductive layer in contact with an upper surface of the first passivation layer. A first semiconductor die is mounted over the wafer level interconnect structure such that an active surface of the first semiconductor die is in electrical contact with the first conductive layer, and a first encapsulant is deposited over the first semiconductor die. A second encapsulant is deposited over the first encapsulant, and the first and second encapsulants are cured simultaneously. The temporary substrate is removed to expose the first passivation layer.
Abstract:
A semiconductor device is made by mounting a semiconductor component over a carrier. A ferromagnetic inductor core is formed over the carrier. A pillar frame including a plurality of bodies is mounted over the carrier, semiconductor component, and inductor core. An encapsulant is deposited around the semiconductor component, plurality of bodies, and inductor core. A portion of the pillar frame is removed. A first remaining portion of the pillar frame bodies provide inductor pillars around the inductor core and a second remaining portion of the pillar frame bodies provide an interconnect pillar. A first interconnect structure is formed over a first surface of the encapsulant. The carrier is removed. A second interconnect structure is formed over a second surface of the encapsulant. The first and second interconnect structures are electrically connected to the inductor pillars to form one or more 3D inductors.
Abstract:
A flip chip style semiconductor package has a substrate with a plurality of active devices formed thereon. A contact pad is formed over the substrate. An under bump metallization (UBM) layer is in electrical contact with the contact pad. A passivation layer is formed over the substrate. In one case, the UBM layer is disposed above the passivation layer. Alternatively, the passivation layer is disposed above the UBM layer. A portion of the passivation layer is removed to create a passivation island. The passivation island is centered with respect to the contact pad with its top surface devoid of the UBM layer. A solder bump is formed over the passivation island in electrical contact with the UBM layer. The passivation island forms a void in the solder bump for stress relief. The UBM layer may include a redistribution layer such that the passivation island is offset from the contact pad.