Abstract:
Steam, partial oxidation and pyrolytic fuel reformers (14 or 90) with rotating cylindrical surfaces (18, 24 or 92, 96) that generate Taylor Vortex Flows (28 or 98) and Circular Couette Flows (58, 99) for extracting hydrogen from hydrocarbon fuels such as methane (CH4), methanol (CH3OH), ethanol (C2H5OH), propane (C3H8), butane (C4H10), octane (C8H18), kerosene (C12H26) and gasoline and hydrogen-containing fuels such as ammonia (NH3) and sodium borohydride (NaBH4) are disclosed.
Abstract:
Chemical process accelerator systems comprising viscid fluid Taylor Vortex Flows (98, 50a) with high-shear-rate laminar Circular Couette Flows (58) in contact with catalysts (92, 92′, 30, 32, 32f, 32g, 36, 40, 44, 45, 46, 47, 48), catalytic compositions and structures in chemical reactors and electrochemical cells (e.g. fuel cells, fuel reformers) are disclosed.
Abstract:
A reaction device 10 is used for producing water gas from polyhydric alcohol and water. The reaction device 10 includes a reactor 13 which has a reaction field 14 where a catalyst is provided inside and a reaction fluid flows. The catalyst 17 has a surface extending in a direction of flow of the reaction fluid.
Abstract:
A method of preparing a material surface, such as palladium, to facilitate desirable reactions, especially exothermic reactions in a liquid medium, involves placing the material whose surface is to be treated into an electrolytic cell as at least one of the electrodes and then concurrently stimulating the material electrically, vibrationally and photonically. The electrolytic cell includes a solution in water of an electrolyte, a siliceous surfactant and a pH-adjusting agent, all heated and maintained at or just below its boiling point. A series of voltage pulses are applied to the electrodes over an extended time period while also being illuminated with intensity-modulated light pulses. The material surface thus treated exhibits crater sites and silica coatings, evidencing a change in bonding of the palladium surface, as well as a sustained exothermic reaction.
Abstract:
A method of preparing a material surface, such as palladium, to facilitate desirable reactions, especially exothermic reactions in a liquid medium, involves placing the material whose surface is to be treated into an electrolytic cell as at least one of the electrodes and then concurrently stimulating the material electrically, vibrationally and photonically. The electrolytic cell includes a solution in water of an electrolyte, a siliceous surfactant and a pH-adjusting agent, all heated and maintained at or just below its boiling point. A series of voltage pulses are applied to the electrodes over an extended time period while also being illuminated with intensity-modulated light pulses. The material surface thus treated exhibits crater sites and silica coatings, evidencing a change in bonding of the palladium surface, as well as a sustained exothermic reaction.
Abstract:
Surface-active solid-phase catalyst activity may be substantially improved by creating deliberate repetitive surface-to-surface contact between portions of the active surfaces of catalyst objects. While they are immersed in reactant material such contact between portions of the active surfaces of catalyst objects can substantially activate the surfaces of many heterogeneous catalysts. Examples are given of such action employing a multitude of predetermined shapes, supported catalyst structures, etc. agitated or otherwise brought into contact to produce numerous surface collisions. One embodiment employs a gear pump mechanism with catalytically active-surfaced gear teeth to create the repetitive transient contacting action during pumping of a flow of reactant. The invention is applicable to many other forms for creating transient catalytic surface contacting action. Optionally catalytic output of such systems may be significantly further improved by employing radiant energy or vibration.
Abstract:
Hydrogen generation system. A source of sodium borohydride is carried on a flexible substrate that moves from a feed roll to a takeup roll. A reaction among sodium borohydride, a catalyst and water evolves hydrogen and forms a by-product that is removed from the reaction area.
Abstract:
Hydrogen generation system. A source of sodium borohydride is carried on a flexible substrate that moves from a feed roll to a takeup roll. A reaction among sodium borohydride, a catalyst and water evolves hydrogen and forms a by-product that is removed from the reaction area.
Abstract:
Particles constituted of either a single element selected from the group consisting of silicon, titanium, nickel, and samarium or a carbon fluoride are disposed in such respective positions that the wave energy inherent in the element or carbon fluoride is amplified to thereby enable the particles to have, among these, a field where energy concentration occurs. Thus, an active structure is obtained which is capable of generating hydrogen by liberating hydrogen from the hydrogen bonds of water or a hydrocarbon without applying an external energy thereto.