Abstract:
Improved isoparaffin-olefin alkylation solid catalyst processes are provided which are characterized by low coke laydown and catalyst deactivation rates and production of valuable branched chain, high octane number alkylates. The processes of the invention involve providing a starting reactant mixture comprising an isoparaffin, an olefin and a co-solvent or diluent (carbon dioxide in molar excess, methane, hydrogen or mixtures thereof), and contacting the reactant mixture with an alkylation catalyst at near-critical or preferably supercritical conditions for the reaction mixture. The carbon dioxide serves as a co-solvent and reduces the critical temperature (T.sub.c) of the reaction mixture, thereby allowing lower reaction temperatures. The isoparaffin and olefin reactants are preferably pretreated to minimize moisture, peroxide and oxygenate impurities therein.
Abstract:
An improved process and apparatus are disclosed for the supercritical water oxidation of organic waste materials which avoids or at least substantially reduces the corrosion and solids deposition problems associated with prior art techniques. According to this invention, externally heated supercritical water is fed to a platelet tube reactor to both protectively coat its inner surface and heat the waste stream to oxidation reaction conditions. Higher reaction temperatures can be used as compared to prior art processes, which significantly improves the reaction rate and permits smaller reactors to be used. The protective film of water on the reactor inner surface, coupled with the elimination of preheating of the waste material, substantially reduces solids deposition and corrosion.
Abstract:
A process and apparatus for the supercritical water oxidation of organic waste materials which avoids or at least substantially reduces the corrosion and solids deposition problems associated with prior art techniques and which provides for efficient heating of the waste material to reaction conditions. Externally heated supercritical water is fed to a compound platelet tube reactor. The compound reactor includes a reaction zone and inner (smaller) and outer (larger) concentric platelet tubes supported concentrically within a shell. The water fed to the reactor both protectively coats surfaces of the inner and outer platelet tubes facing the reaction zone and heats the waste stream to oxidation reaction conditions. Higher reaction temperatures can be used as compared to prior art processes, which significantly improves the reaction rate and permits smaller reactors to be used. The protective films of water on the surfaces of the platelet tubes, coupled with the elimination of preheating of the waste material, substantially reduces solids deposition and corrosion.
Abstract:
A method and device for high-pressure treatment of liquid substances, for example foodstuffs. The substance undergoes a cyclic process whereby a limited amount of the substance during each cycle is pressurized in a pressure intensifier (1) to a predetermined pressure and is then maintained at this pressure for a predetermined period of time. After the substance has been pressurized in the pressure intensifier (1), it is conducted to a pressure chamber (10) while maintaining the predetermined pressure. The substance is further caused to reside in the pressure chamber (10) for the predetermined period of time by being caused to pass over a predetermined distance between an inlet (9a) and an outlet (9b), which are arranged in the pressure chamber (10).
Abstract:
The invention relates to an improved apparatus and method for initiating and sustaining an oxidation reaction. A fuel, such as natural gas or hazardous waste, is introduced into a reaction zone within a pressurized containment vessel. A permeable liner is placed within the containment vessel and around the reaction zone. An oxidizer, preferably oxygen, is mixed with a carrier fluid, such as water, and the mixture is heated and pressurized to supercritical conditions of temperature and pressure. The supercritical oxidizer-carrier mix is introduced to the reaction zone gradually and uniformly, over a comparatively large area, by forcing it radially inward through the permeable liner and toward the reaction zone. A means and method for cooling the exhausted by-products and using them as a cleansing rinse are disclosed.
Abstract:
Apparatus and methods utilizing cross-flow filtration under supercritical conditions for water to separate/filter a feed stream or reaction mixture, remove oxides or other solids from fluids, and/or separate ion species (e.g., ions, electrolytes, or salts). Cross-flow filtration may be utilized in combination with wet oxidation of waste and wastewaters to remove organic and inorganic materials.
Abstract:
The process involves improved route for expressing volatilizable components from a mixture containing such components. The improvement involves providing a sample having a mixture of volatile organic compounds and a microwave absorbing compound therein, contacting the mixture with the microwave energy to vaporize the microwave absorbing compound and subsequently volatilizing at least one volatile organic compound contained in the mixture by absorption of energy from the vaporized microwave compound.
Abstract:
A process is described for hydrotreating a heavy hydrocarbon oil containing a substantial portion of material which boils above 524.degree. C. to form lower boiling materials, which comprises adding to the heavy hydrocarbon oil as solvent a paraffinic, isoparaffinic or cyclic paraffinic hydrocarbon which is also hydrogen-rich and has a critical temperature of less than 500.degree. C. to thereby form a diluted feedstock mixture and subjecting said feedstock mixture to hydrotreating in the presence of activated carbon catalyst at a temperature and pressure substantially at or greater than the critical temperature and pressure of the solvent.
Abstract:
A supercritical water oxidation reactor includes a vessel with an interiorurface, two cooling sections, a heat exchanger, an oxygenating section, a pump, and a trap. The interior surface of the vessel has a corrosion-resistant, artificial ceramic or diamond-like coating. The artificial diamond coating is thin and crystal-like in structure. The heat exchanger is located between the two cooling sections. The heat exchanger and the two cooling sections surround the exterior of the vessel. The oxygenating section comprises a porous cylindrical baffle positioned within the vessel. The porous baffle transfers oxygen, hydrogen peroxide, or other oxygenating substances to an aqueous hazardous waste introduced into the reactor.In accordance with another aspect of the invention, the oxygenating section includes a shaft having a helical extension. The shaft has a corrosion-resistant, artificial diamond or diamond-like coating on its outer surface. The shaft rotates the helical extension to assist in removing solids from the aqueous hazardous waste.