Abstract:
A photochemical reaction apparatus including a reactor and a light source situated so that light from the light source is directed through a portion of the reactor wall is disclosed. The apparatus is characterized by the portion of the reaction wall comprising a copolymer of a perfluoro (alkyl vinyl ether). The perfluoro (alkyl vinyl ether) is selected from the group consisting of CF30CF═CF2, C2F5OCF═CF2, C3F7OCF═F2, and mixture thereof. Also disclosed is a photochemical reaction process wherein light from a light source is directed through said reactor wall to interact with reactants in said reactor. A process for increasing the fluorine content of at least one compound selected from hydrocarbons and halohydrocarbons, comprising: (a) photochlorinating said at least one compound; and (b) reacting the halogenated hydrocarbon produced in (a) with HF. A process for producing an olefinic compound, comprising: (a) photochlorinating at least one compound selected from hydrocarbons and halohydrocarbons containing at least two carbon atoms and at least two hydrogen atoms to produce a halogenated hydrocarbon containing a hydrogen substituent and a chlorine substituent on adjacent carbon atoms; and (b) subjecting the halogenated hydrocarbon produced in (a) to dehydrohalogenation.
Abstract:
The invention relates to a method and apparatus for safely producing hydrogen peroxide by injecting dispersed minute bubbles of hydrogen and oxygen into a rapidly flowing liquid medium. The minute bubbles are surrounded by the liquid medium of sufficient volume for preventing an explosive reaction between the hydrogen and oxygen. The liquid medium is formed of an acidic aqueous solution and a Group VIII metal catalyst. Hydrogen is sparged into the flowing medium for dissolution of the hydrogen in the medium. Oxygen bubbles are reacted with the dissolved hydrogen for producing hydrogen peroxide. Preferably, the liquid medium has a velocity of at least 10 feet per second for providing a bubbly flow regime in the reactor. The invention allows the direct combination of oxygen and hydrogen while preventing propagation of an explosive condition within the reactor. The method and apparatus provide for the safe production of hydrogen peroxide with low manufacturing costs.
Abstract:
Spent pyrophoric reaction catalyst from a reaction mixture is removed safely, cheaply, and rapidly using a single plate pressure filter. After hydrogenation, the reaction mixture is decanted, the desired hydrogenation product is removed, and catalyst-rich material which settles at the bottom of the vessel is delivered to a single plate pressure filter fitted with a filter bag 40 of permeable material. The spent catalyst is retained in the filter bag 40 and stored under water awaiting recovery. The filter apparatus 1 comprises a container having a domed base 2, a generally cylindrical sidewall 3 terminating in an upper rim 4 closed by a lid 5 having lifting lugs 6. The lid 5 is fixed in pressure-tight engagement with the sidewall 3 by flange engaging screw clamps 7 and an embedded polytetrafluoroethene gasket 8. The filter bag 40 is held in position by a band 11 and may be readily released for removal of the spent catalyst material. The bag 40 may be reused.
Abstract:
The invention includes a method of increasing polymerization within a condensation polymer. A substantially dry condensation polymer material is provided. The material is exposed to radiation having a frequency less than microwave frequency for a time of at least about 0.5 hour to increase an amount of polymerization within the material. The invention also includes a method of treating a polyamide material. A polymeric polyamide material is provided and exposed to first radiation having a first power intensity. The material is then exposed to second radiation having a second power intensity. The first power intensity is higher than the second power intensity. Additionally, the invention includes an apparatus. The apparatus includes an inlet port through which a feed material enters the apparatus, and an outlet port through which the feed material passes out of the apparatus. The apparatus further includes a feed material flow path from the inlet port to the outlet port, The flow path comprises at least two radio-frequency radiation reaction zones which comprise different power intensities of radio-frequency radiation relative to one another. The invention further comprises methods and apparatuses utilized for treatment and/or formation of nylon.
Abstract:
The invention relates to a method and apparatus for safely producing hydrogen peroxide by injecting dispersed minute bubbles of hydrogen and oxygen into a rapidly flowing liquid medium. The minute bubbles are surrounded by the liquid medium of sufficient volume for preventing an explosive reaction between the hydrogen and oxygen. The liquid medium is formed of an acidic aqueous solution and a Group VIII metal catalyst. Hydrogen is sparged into the flowing medium for dissolution of the hydrogen in the medium. Oxygen bubbles are reacted with the dissolved hydrogen for producing hydrogen peroxide. Preferably, the liquid medium has a velocity of at least 10 feet per second for providing a bubbly flow regime in the reactor. The invention allows the direct combination of oxygen and hydrogen while preventing propagation of an explosive condition within the reactor. The method and apparatus provide for the safe production of hydrogen peroxide with low manufacturing costs.
Abstract:
A multi-phase staged passive reactor (10) for promoting interphasic interaction of a first substance in a liquid phase with a second substance in a non-miscible liquid phase, a solid phase or a gaseous phase. The reactor comprises a plurality of stages (C, D and E) which define a flow path for the substances in different phases. Each stage is shaped to define a substantially curved flow path (12) having a center of curvature located to one side of the flow path (12). Thus, for example, stages (D) and (E) have a respective center of curvature (14, 16), on opposite sides of the flow path (12) whereby, in use, as the substances flow through the reactor (10) particles of the second substance are forced to migrate through the first substance, first in one direction and then in substantially the reverse direction due to an inertial field of changing direction thus generated. Due to the differences in the relative densities of the respective phases, differential inertial forces are exerted on each phase as the mixture flows along the general flow direction of flow path (12) the interphasic interaction thus produced includes both mechanical interaction due to, for example, collisions and energy transfer, as well as chemical reactions due to, for example, oxidation and ion-exchange. There are no moving parts in the reactor (10) which is of relatively simple construction, and it is extremely efficient, achieving high reaction rates, high mass transfer rates and high mixing rates.
Abstract:
A process for the simultaneous replacement of a first catalyst by a second catalyst which first catalyst is circulating as a moving bed of solid particles in a hydrocarbon treating unit, which unit comprises at least one processing reactor. The first catalyst is withdrawn downstream of the reactor, or of each reactor, in the direction of catalyst circulation. The second catalyst is simultaneously injected upstream of the reactor or of each reactor. The bulk density of the material withdrawn downstream of the reactor, or of each reactor, is measured continuously. The withdrawal of the first catalyst and the injection of the second catalyst into the reactor concerned are interrupted when the bulk density so measured is equal to that of the second catalyst.
Abstract:
The oxidation of butane to maleic anhydride in a recirculating solids reactor using a stoichiometric excess of oxygen, a vanadium-phosphorus oxide catalyst in oxidized form, and separate regeneration of the resultant reduced catalyst is disclosed.
Abstract:
An apparatus for aerosol direct fluorination is disclosed in which a material to be fluorinated is formed into an aerosol prior to fluorination by introducing a vapor stream of the material to be fluorinated centrally into converging flows of carrier particles suspended in a gas and condensing the vapor onto the particles. Fluorine is contacted with the aerosol in an elongated fluorination reactor having microporous walls providing a substantially continuous influx of fluorine-containing gas which creates an increasing fluorine concentration gradient as the aerosol moves through the reactor and provides a barrier to prevent contact of the aerosol with the microporous walls. A photochemical stage includes an elliptical reflector with a light source of one focus and a flow of aerosol and fluorine at the others.
Abstract:
Apparatus for effecting multiple treatment steps needed to regenerate spent hydrocarbon conversion catalyst. Catalyst is contacted with a hot oxygen-containing gas stream in order to remove coke which accumulates on the catalyst while it is in a hydrocarbon conversion zone. After the coke is burned off in a combustion zone, catalyst is passed into a halogenation zone wherein a halogen is deposited on the catalyst. Catalyst leaving the halogenation zone is passed into a drying zone for removal of water formed in the combustion zone which has remained on the catalyst instead of being carried off with combustion gases. Water removal is accomplished by passing a hot dry air stream through the catalyst in the drying zone. A portion of the air stream which has passed through the drying zone is passed through the halogenation zone in admixture with a halogen, while the balance of the air stream leaving the drying zone is removed from the regeneration apparatus by venting it to the atmosphere or another disposal location. That portion of the air stream which is utilized in the halogenation zone is then passed into the combustion zone where it provides the oxygen required to accomplish burning of the carbon. The flow of air into the drying zone is controlled at a rate established to accomplish the degree of desired drying. The oxygen content of the gas flowing to the combustion zone is monitored and the amount of gas vented from the drying zone is adjusted in order to maintain the desired concentration of oxygen. In this manner, the amount of air supplied to the combustion zone is adjusted independently of the air supplied to the drying zone.