Abstract:
A process for large scale and energy efficient product on of oxygenates from sugar is disclosed in which a sugar feedstock is introduced into a thermolytic fragmentation reactor comprising a fluidized stream of heat carrying particles. The heat carrying particles may be separated from the fluidized stream prior to cooling the fragmentation product and may be directed to a reheater to reheat the particles and recirculate the heated particles to the fragmentation reactor.
Abstract:
A process of integrated system formed by coupling of fixed bed, jetting floating bed, and separating unit, aimed to provide a new process and equipment of higher efficiency, which integrates multi-type reactors and separation is provided. Reaction materials undergo preliminary reaction in fixed bed reactor and intensified reaction in jetting floating bed reactor, and then separation in the subsequent separation system. Unreacted materials will be returned to the raw material intermediate storage tank for mixing with fresh materials, as raw materials for continued reaction. During this process, materials first pass the fixed bed reactor once to achieve certain conversion rate, and then enter the jetting floating bed reactor for intensified reaction. When the product reaches required concentration, the materials will enter subsequent separation equipment for separation.
Abstract:
The present invention concerns a radial bed reactor comprising a vessel provided with a reaction zone with a moving catalyst bed. The reactor further comprises, inside the reaction zone: at least two feed distribution tubes, each having a first end in communication with the feed inlet means and a second, closed end, the distribution tubes extending in a substantially vertical manner and being designed to allow the feed to pass through the reaction zone and to retain the catalysts; and at least two effluent collection tubes, each having a first end (14) communicating with the effluent outlet means and a second, closed end (15), the collection tubes extending in a substantially vertical manner and being designed to allow effluent to pass through the collection tube and to retain the catalysts.
Abstract:
Embodiments of apparatuses and risers for reacting a feedstock in the presence of a catalyst and methods for installing a baffle in such risers are provided. In one example, a riser comprises a sidewall that defines a cylindrical housing surrounding an interior. A plurality of baffle assemblies is releasably coupled to the sidewall and each comprises a baffle section.The baffle sections together define a segmented baffle ring extending inwardly in the interior.
Abstract:
The present invention relates to a method of forming mixed xylenes from a heavy reformate using a dealkylation-transalkylation system that includes the step of introducing a heavy reformate containing methyl ethyl benzenes and tri-methyl benzenes and sufficiently free of toluene into the dealkylation stage with a hydrogen-containing material such that the heavy reformate and the hydrogen-containing material intermingle and contact a hydrodealkylation catalyst. The dealkylation-transalkylation system includes dealkylation stages, non-aromatic product gas separations and transalkylation stages. The BTEX component toluene forms from the reaction of methyl ethyl benzenes and hydrogen in the presence of the hydrodealkylation catalyst. The method also includes the step of introducing a dealkylated heavy reformate into the transalkylation stage such that the dealkylated heavy reformate contacts a transalkylation catalyst, forming a transalkylation stage product mixture that includes mixed xylenes.
Abstract:
Embodiments of apparatuses and risers for reacting a feedstock in the presence of a catalyst and methods for installing a baffle in such risers are provided. In one example, a riser comprises a sidewall that defines a cylindrical housing surrounding an interior. A plurality of baffle assemblies is releasably coupled to the sidewall and each comprises a baffle section. The baffle sections together define a segmented baffle ring extending inwardly in the interior.
Abstract:
A hydroprocessing method and system involves introducing heavy oil and well-dispersed metal sulfide catalyst particles, or a catalyst precursor capable of forming the well-dispersed metal sulfide catalyst particles in situ within the heavy oil, into a hydroprocessing reactor. The well-dispersed or in situ metal sulfide catalyst particles are formed by 1) premixing a catalyst precursor with a hydrocarbon diluent to form a precursor mixture, 2) mixing the precursor mixture with heavy oil to form a conditioned feedstock, and 3) heating the conditioned feedstock to decompose the catalyst precursor and cause or allow metal from the precursor to react with sulfur in the heavy oil to form the well-dispersed or in situ metal sulfide catalyst particles. The well-dispersed or in situ metal sulfide catalyst particles catalyze beneficial upgrading reactions between the heavy oil and hydrogen and eliminates or reduces formation of coke precursors and sediment.
Abstract:
A gas-particle processor comprising: a chamber having a gas inlet, a gas outlet and one or more particle inlets; a gas flow arrangement operable to flow gas through the chamber from the gas inlet to the gas outlet at a first controlled mass flow-rate; and a particle flow arrangement operable to introduce particles in one or more streams into the chamber at a second controlled mass flow-rate, each particle stream flowing through respective processing regions in the chamber, wherein the processor is operable to control the first and/or second controlled mass flow-rates to provide a gas-particle mixture porosity in a substantial portion of each processing region of 0.900-0.995.
Abstract:
The fluid bed apparatus has a chamber (1) including a plenum (11) and a perforated base plate (3) is located above the plenum (11). An inlet (2) and an outlet (7) are provided for process gas. A discharge opening (8) has a lower edge (8a) and an upper edge (8b) and defining a height and an opening area, the base plate (3) being positioned above the lower edge (8a) of the discharge opening (8) such that the opening area of the discharge opening (8) is divided into an opening area (Aa) below the base plate (3) and an opening area (Ap) above the base plate (3).
Abstract:
A secondary containment system is used with a screenless reactor. The secondary containment system includes a screen sized to prevent the passage of catalyst particles, and is affixed to the screenless reactor with supports to hold the screen a desired distance from the reactor.