Abstract:
Disclosed are embodiments of methods, apparatus, systems, compositions, and articles of manufacture relating to identifying the source of bioparticles, such as bioparticles shed by an organism. In embodiments, a method may include collecting a sample of bioparticles from the environment, selecting from that sample the bioparticles most informative for identifying their source, and gathering data from those bioparticles to form bioparticle signatures; the bioparticle signatures may be processed into a multi-dimensional vector which may be compared to a multi-dimensional vector derived from a standard using a pattern recognition strategy. In embodiments, an apparatus may include a particle collection device to collect a sample, a transfer device to select bioparticles, and a detector that restricts the movement of the bioparticles; the restricted movement may be used to produce a bioparticle signature.
Abstract:
An apparatus for identifying objects in a plurality of objects includes a portion which applies dielectrophoresis to the plurality of objects. The apparatus includes a portion which tracks the plurality of objects' reaction to the dielectrophoresis over time and extracts visible features about the plurality objects being tracked. The apparatus includes a portion which automatically identifies the objects from the plurality of objects based on the objects' reaction to the dielectrophoresis over time and the visible features of the objects. A method for identifying objects in a plurality of objects. A dielectrophoresis cartridge.
Abstract:
Provided are dielectrophoresis (DEP) devices and methods that allow cell sorting to identify, isolate, and/or separate cells of interest based on electrical and physical properties of the cells. Particularly, provided are systems and methods for manipulating particles suspended in a fluid, e.g., cells, micro- or nano-particles, using their electrical signatures. Such methods can be performed using DEP, iDEP, and/or cDEP (contactless dielectrophoresis, where direct contact between the electrodes and the sample is avoided). Typically, an electric field is induced in a sample comprising the target particles and/or cells, such as cancer cells, and the spatial distribution of cells is measured to identify one or more characteristics or properties of the cancer cells. The identified characteristics of the sorted cells can be used to determine drug efficacy and/or resistance with respect to the cells.
Abstract:
The present application provides a magnetic rack for separating magnetic particles from a non-magnetic medium. The magnetic rack comprises a supporting housing having a top side, a bottom side, two opposite lengthwise sides, and a cavity, wherein at least one magnet is disposed in the cavity, each lengthwise side is attached with a receiving member, and the top side has at least two sockets. The magnetic rack further comprises a pair of supporting walls, wherein each supporting wall has a fixing member introduced onto or into the receiving member to tightly connect the supporting housing with the pair of supporting walls. With the coupling of the receiving member and the fixing member, the supporting wall and the supporting housing can be tightly connected together, therefore the shake of the magnetic rack or the sample vials inserted in the magnetic rack can be significantly avoided. In this way, the magnetic particles can be effectively separated from a non-magnetic medium in the sample vial.
Abstract:
The present invention includes methods, devices and systems for isolating a nucleic acid from a fluid comprising cells. In various aspects, the methods, devices and systems may allow for a rapid procedure that requires a minimal amount of material and/or results in high purity nucleic acid isolated from complex fluids such as blood or environmental samples.
Abstract:
The present invention includes methods, devices and systems for isolating a nucleic acid from a fluid comprising cells. In various aspects, the methods, devices and systems may allow for a rapid procedure that requires a minimal amount of material and/or results in high purity nucleic acid isolated from complex fluids such as blood or environmental samples.
Abstract:
The invention relates to a centrifuge for separating a sample into at least two components, comprising a chamber for receiving a sample to be centrifuged. According to the invention, the centrifuge further comprises a means for controlling the progress of the sample separation is located at the chamber.
Abstract:
The present invention includes methods, devices and systems for isolating a nucleic acid from a fluid comprising cells. In various aspects, the methods, devices and systems may allow for a rapid procedure that requires a minimal amount of material and/or results in high purity nucleic acid isolated from complex fluids such as blood or environmental samples.
Abstract:
Devices for sorting components (e.g., cells) contained in a liquid sample are provided. In certain aspects, the devices include a magnetic separation device and an acoustic concentrator device fluidically coupled to magnetic separation device. Aspects of the invention further include methods for sorting cells in a liquid sample, and systems, and kits for practicing the subject methods.
Abstract:
A microfluidic device for size-based particle separation and methods for its use, where the microfluidic device comprises: (a) an inlet reservoir, where the inlet reservoir is configured for communication with an inlet electrode, (b) an insulator constriction coupled to the inlet reservoir via a microchannel, where the insulator constriction comprises an insulating material, and (c) a plurality of outlet channels each defining a first end and a second end, where the first end of each of the plurality of outlet channels is coupled to the insulator constriction, where the second end of each of the plurality of outlet channels is coupled to one of a plurality of outlet reservoirs, and where the plurality of outlet reservoirs are configured for communication with one or more outlet electrodes.