Abstract:
A method for modifying a ceramic matrix component is disclosed including identifying a non-conforming region of a composite component capable of operating in a gas turbine engine; removing at least a portion of the non-conforming region to create an exposed surface of the composite component; preparing a preform in response to the removing at least a portion of the non-conforming region; applying a reactive constituent surface region to at least one of the exposed surface of the composite component and the preform, the reactive constituent surface region being capable of producing a non-equilibrium condition; positioning the preform to provide a contact region between the exposed surface of the composite component and the preform proximate the reactive constituent surface region; and reacting the reactive constituent surface region in an equilibrium reaction at the contact region to form a bond structure between the exposed surface of the composite component and the preform.
Abstract:
A method for making a gas turbine engine matrix composite structure. The method includes providing at least one metal core element, fabricating a matrix composite component about the metal core element, and removing at least part of the metal core element from the matrix composite component by introduction of a halogen gas.
Abstract:
A process for producing a metallic or ceramic shaped body from a thermoplastic material comprising A) 40 to 65% inorganic sinterable powder A B) 35 to 60% binder B1) 50 to 95% polyoxymethylene homo- or copolymers; B2) 5 to 50% of a polymer dissolved or dispersed in B1) with a particle size of less than 1 μm, and C) 0 to 5% by volume of a dispersing aid, by injection molding or extrusion to give a green body, removing the binder and sintering, which comprises removing the binder by a) treating the molding with a solvent which extracts the binder component B2) from the molding and in which the binder component B1) is insoluble, b) removing the solvent from the molding by drying, and c) treating the molding in an acid-containing atmosphere is described.
Abstract:
An object of the present invention is to easily eliminate fumes inside a chamber, so as to improve a positional accuracy of irradiation with a light beam and a machining accuracy in a method for manufacturing a three-dimensional shaped object. A stacked-layers forming device 1 includes a powder layer forming unit 3, a light beam irradiating unit 4, a base 22 which is fixed and on which a powder layer 32 is formed, a lifting/lowering frame 34 which surrounds the circumference of the base 22 and is freely capable of being lifted and lowered, a cover frame 36 which has a window 36a allowing transmission of light beam in its top surface, and whose bottom surface is opened, and which is disposed on the lifting/lowering frame 34 to form a chamber C, and a gas tank 71 for supplying an ambient gas. The lifting/lowering frame 34 is lowered to reduce the volume of the chamber C, so as to discharge fumes generated inside the cover frame 36, which performs replacement with the ambient gas. Since the volume of the chamber C is reduced, it is possible to easily eliminate the fumes, which makes it possible to improve the positional accuracy of irradiation with the light beam L, and the machining accuracy.
Abstract:
To provide a method of manufacturing a powder for dust core capable of preventing generation of secondary particles during a siliconizing treatment and improving quality and productivity of the powder for dust core, a dust core made of the powder for dust core manufactured by the method, and an apparatus for manufacturing the powder for dust core, of a powder mixture comprising a soft magnetic metal powder and a powder for siliconizing including silicon dioxide, only the soft magnetic metal powder is heated by induction heating to transmit heat from the surface of the soft magnetic metal powder to the powder for siliconizing, thereby releasing a silicon element from the powder for siliconizing and diffusing and impregnating the silicon element into the surface of the soft magnetic metal powder to form a silicon impregnated layer.
Abstract:
A hydrodynamic bearing (300) has a bearing surface adapted for receiving a shaft to rotate thereon. The bearing surface has a plurality of grooves (34) defined therein. The grooves for generating hydrodynamic pressure each has at least one interior surface (3421). The at least one interior surface has a sloping surface along a circumferential direction of the hydrodynamic bearing.
Abstract:
In an alloy based on titanium aluminides, metal droplets are obtained from a titanium aluminide metal melt. The metal droplets are enriched with halogens resulting in halogen-enriched titanium aluminide metal droplets. The alloy is molded from the halogen-enriched titanium aluminide metal droplets by, preferably hot isostatic, pressing. Titanium aluminide powder can be heated in a container, for a predetermined period of time, wherein an atmosphere, enriched with halogens, is or will be provided in the container, so that a halogen-enriched titanium aluminide metal powder is formed, or metal droplets are formed from a titanium aluminide metal melt. The metal droplets are enriched with halogens so that halogen-enriched titanium aluminide metal droplets result. Subsequently, the alloy is molded from the halogen-enriched titanium aluminide metal droplets.
Abstract:
A nickel powder with a mean particle size of 0.05 to 1.0 μm, the nickel powder having a thin oxidized layer of nickel on a surface thereof, an oxygen content of 0.3 to 3.0 wt. % and a carbon content of 100 ppm or less per specific surface area of 1 m2/g of the powder, in a weight proportion of carbon to the nickel powder of unit weight. When the powder is used for a conductive paste for forming inner electrode layers of a multilayer electronic component, it enables a decrease in the residual carbon amount after a binder removal process, thereby making it possible to obtain a multilayer ceramic electronic component excellent electrical characteristics and high reliability in which electrode layers excelling in continuity are formed without decreasing the strength and electrical characteristics of the electronic component or creating structural defects.
Abstract:
One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material which may comprise an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. One may also instead react the aforementioned crystallites with a metallic component. The reaction process can comprise combining the crystallites with one or more metal salts in an aqueous solution and then heating that aqueous solution to remove the water. This heating can occur in a reducing atmosphere (comprising, for example, hydrogen and/or methane) to also reduce the salt to metal. Metal or metal carbide nanowires and/or quantum dots are produced as a result of the reaction with the ultrananocrystalline diamond. Such material exhibits thermoelectric and other useful properties.
Abstract:
A process for the manufacture of soft magnetic composite components is provided comprising the steps of die compacting a powder composition comprising a mixture of soft magnetic, iron or iron-based powder, the core particles of which are surrounded by an electrically insulating, inorganic coating, and an organic lubricant in an amount of 0.05 to 1.5% by weight of the composition, the organic lubricant being free from metal and having a temperature of vaporisation less than the decomposition temperature of the coating; ejecting the compacted body from the die; heating the compacted body in a non-reducing atmosphere to a temperature above the vaporisation temperature of the lubricant and below the decomposition temperature of the inorganic coating for removing the lubricant from the compacted body, and subjecting the obtained body to heat treatment at a temperature between 3000 and 6000 in water vapour. The invention also concerns soft magnetic composite components having a transverse rupture strength of at least 100 MPa, a permeability of at least 700, and a core loss at 1 Tesla and 400 Hz of at most 70 W/kg.