Abstract:
A method for manufacturing a dust core, includes: applying energy to a surface of a soft magnetic powder coated with an insulating body containing a compound having an aluminum-oxygen bond; exposing the soft magnetic powder to an atmosphere having a dew point of −30° C. or higher and 15° C. or lower under an atmospheric pressure; and forming a molded product by pressing the soft magnetic powder at 20 MPa or more and 400 MPa or less.
Abstract:
Polycrystalline diamond constructions are formed from a mixture of diamond grains including a first volume of fine-sized diamond grains, and a second volume of coarse-sized diamond grains. The fine-sized diamond grains are partially graphitized, and the coarse-sized diamond grains are not graphitized. The mixture of diamond grains is subjected to high pressure/high temperature sintering process conditions in the presence of a sintering aid thereby forming polycrystalline diamond. Contact areas between coarse-sized diamond grains in the polycrystalline diamond construction are substantially free of graphite.
Abstract:
This invention concerns an additive manufacturing apparatus for building objects by layerwise consolidation of material. The apparatus includes a build chamber containing a working area, a high energy beam for consolidating material deposited in the working area in layers and a flow device for generating a gas flow across at least a part of the working area from a gas inlet to a gas outlet. The gas inlet and gas outlet are arranged to be movable within the build chamber.
Abstract:
A method and system for coating metallic powder particles is provided. The method includes: disposing an amount of metallic powder particulates within a fluidizing reactor; removing moisture adhered to the powder particles disposed within the reactor using a working gas; coating the powder particles disposed within the reactor using a precursor gas; and purging the precursor gas from the reactor using the working gas.
Abstract:
A method for the generative production of a three-dimensional component includes providing a metallic starting material in the form of a powder bed in a substantially horizontal starting plane, supplying a process gas to the starting material, melting the starting material by a heat source, repeating the above steps, wherein at least a portion of the process gas is supplied through the powder bed. A related device is also provided.
Abstract:
Apparatuses are disclosed for three-dimensionally printing reactive materials which utilize a powder spreading step followed by a binder-jet deposition step. Some such apparatuses include a binder jet three-dimensional printing device, a curing device, and a depowdering device contained within an environmental enclosure which provides an inert atmosphere sufficient to allow a reactive material to be used as a build material without fire or explosion hazards. Some such apparatuses include one or more conveying systems for moving a removable build box among the various devices. Environmental enclosures having unique designs and features are disclosed.
Abstract:
A method for gas atomization of a titanium alloy, nickel alloy, or other alumina (Al2O3)-forming alloy wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a passivation reaction film on the atomized particles wherein the reaction film retains a precursor halogen alloying element that is subsequently introduced into a microstructure formed by subsequent thermally processing of the atomized particles to improve oxidation resistance.
Abstract translation:一种用于钛合金,镍合金或其它氧化铝(Al 2 O 3)形成合金的气体雾化的方法,其中雾化颗粒在非常短的时间内固化和冷却时暴露于多种气态反应剂以便原位形成 雾化颗粒上的钝化反应膜,其中反应膜保留前体卤素合金元素,其随后引入通过随后的雾化颗粒的热加工形成的微结构中以提高耐氧化性。
Abstract:
A chromium-iron alloy comprises in weight %, 1 to 3% C, 1 to 3% Si, up to 3% Ni, 25 to 35% Cr, 1.5 to 3% Mo, up to 2% W, 2.0 to 4.0% Nb, up to 3.0% V, up to 3.0% Ta, up to 1.2% B, up to 1% Mn and 43 to 64% Fe. In a preferred embodiment, the chromium-iron alloy comprises in weight %, 1.5 to 2.3% C, 1.6 to 2.3% Si, 0.2 to 2.2% Ni, 27 to 34% Cr, 1.7 to 2.5% Mo, 0.04 to 2% W, 2.2 to 3.6% Nb, up to 1% V, up to 3.0% Ta, up to 0.7% B, 0.1 to 0.6% Mn and 43 to 64% Fe. The chromium-iron alloy is useful for valve seat inserts for internal combustion engines such as diesel or natural gas engines.
Abstract:
An object of the present invention is to easily eliminate fumes inside a chamber, so as to improve a positional accuracy of irradiation with a light beam and a machining accuracy in a method for manufacturing a three-dimensional shaped object. A stacked-layers forming device 1 includes a powder layer forming unit 3, a light beam irradiating unit 4, a base 22 which is fixed and on which a powder layer 32 is formed, a lifting/lowering frame 34 which surrounds the circumference of the base 22 and is freely capable of being lifted and lowered, a cover frame 36 which has a window 36a allowing transmission of light beam in its top surface, and whose bottom surface is opened, and which is disposed on the lifting/lowering frame 34 to form a chamber C, and a gas tank 71 for supplying an ambient gas. The lifting/lowering frame 34 is lowered to reduce the volume of the chamber C, so as to discharge fumes generated inside the cover frame 36, which performs replacement with the ambient gas. Since the volume of the chamber C is reduced, it is possible to easily eliminate the fumes, which makes it possible to improve the positional accuracy of irradiation with the light beam L, and the machining accuracy.
Abstract:
A hydrodynamic bearing (300) has a bearing surface adapted for receiving a shaft to rotate thereon. The bearing surface has a plurality of grooves (34) defined therein. The grooves are used for generating hydrodynamic pressure. A depth of each of the grooves is changed in a sloping trend along the extension direction of the groove.