Abstract:
A power supply device comprises a lead-acid battery disposing a plurality of cells in a battery case of a rectangular parallelepiped shape having a pair of facing walls and a pair of end surface walls at the circumference of a rectangular bottom surface plate, and a power storage device connected in parallel to the lead-acid battery. The power storage device has a larger storage capacity by regenerative braking than that of the lead-acid battery, and the power storage device has an external case having a heat radiation plate disposed in a thermally connected state to the facing wall of the lead-acid battery, and the heat radiation plate is thermally connected to the facing wall of the lead-acid battery.
Abstract:
A battery package including a power storage portion; and a control device, where the control device determines if a first temperature of the power storage portion is higher than a predetermined temperature, and if the first temperature is higher than the predetermined temperature, discharges the power storage portion at a first discharge rate.
Abstract:
The present invention relates to a device and method for controlling an electric vehicle that enables a user to easily control a predicted distance that can be travelled by displaying the predicted distance that can be travelled in response to the power consumption of electric loads on the electric vehicle. The device for controlling the electric vehicle according to an embodiment of the present invention may include: a power consumption detector that detects a first power consumption of main electric loads associated with the operation of the electric vehicle and a second power consumption of optional electric loads on the electric vehicle; a control unit that determines a first predicted distance that can be travelled corresponding to the first power consumption detected and a second predicted distance that can be travelled corresponding to the second power consumption detected; and a display that displays the first and second predicted distances that can be travelled.
Abstract:
A heat medium circuit including a first path and a heat medium circuit including a second path are formed independently from each other by operating a first switching valve and a second switching valve in conjunction with each other to make each of multiple flow passages of a first flow passage group communicate with either the first path or the second path. A heat medium circuit in which the first path and the second path are connected to each other in series is formed by operating the first switching valve and the second switching valve in conjunction with each other to make each of the multiple flow passages of the first flow passage group communicate with both the first path and the second path.
Abstract:
An apparatus including an alternator that is drivable by an engine for producing a first AC electric current, a rectifier in electrical communication with the alternator for producing a DC electric current, an inverter in electrical communication with the rectifier for producing a second AC electric current where the second AC electric current having an acceptable frequency and/or voltage, and the inverter in electrical communication with one or more electric loads responsive to the second AC electric current, and an energy storage device that is able to electrically couple to the alternator, rectifier, and/or inverter.
Abstract:
Methods and systems are provided. One method includes receiving a request, at a server, to define an advisor account for a vehicle associated with a user account. The request identifies an advisor entity, a vehicle aspect to be assigned to the advisor entity, and privileges assigned to the advisor entity for the vehicle aspect. The method further includes generating the advisor account for the advisor entity as a sub-account of the user account that is associated with the vehicle. The method includes sending instruction data to the vehicle from the server, wherein the instruction data defines that the vehicle aspect is associated with the advisor account. The method also includes receiving data updates, at the server, from the vehicle for the vehicle aspect, from time to time. The data updates are displayable on a user interface that is accessible to the advisor entity, the user interface being rendered by the server that provides access to the advisor account.
Abstract:
A hybrid vehicle control apparatus for a hybrid vehicle capable of EV travel generated by a motor-generator with an internal combustion engine is provided. The control apparatus includes a maximum value calculation unit for calculating a maximum value of a supply of electric power for an electrically-heated catalyst, when the internal combustion engine is in a stopped state, provided to the electrically-heated catalyst based on (i) at least one of a start-up electric power required for starting up the engine or an operation electric power required for operating a supplemental device, (ii) an electric power output limit value of the battery, and (iii) an electric power required for a travel of the hybrid vehicle. The control apparatus also includes a power supply controller for controlling the supply of electric power for the electrically-heated catalyst based on the maximum value of the supply of electric power for the electrically-heated catalyst.
Abstract:
Methods and apparatus for guiding a mobile transportation means of a set of transportation means to a selected reconditioning station of a set of reconditioning stations, comprising determining a position of the battery, determining a condition of the battery, forecasting a consumption characteristic of the transportation means, evaluating an achievable range of mobility of the transportation means, assigning the selected reconditioning station of the set of reconditioning stations, which is located within the range of mobility of the transportation means along a path to a desired target and guiding the transportation means to the selected reconditioning station, an optimization of the assignment and/or the path is executed by a search algorithm for assigning the set of transportation means to the set of reconditioning stations and batteries, based on actual and/or forecasted information about multiple entities of the sets of transportation means, stations and batteries as well as their conditions.
Abstract:
A thermal management system for an electric vehicle that is used in the electric vehicle driven by an electric motor includes a refrigerant loop for an air conditioner, a refrigerant loop for a battery that allows a refrigerant for the battery to circulate among the battery, an evaporating unit and a heating device, and thermal management controlling means that, during charging of the battery, heats the refrigerant for the battery by using the heating device when temperature of the refrigerant for the battery is lower than target temperature of the refrigerant for the battery, and that allows the refrigerant for the air conditioner to circulate and to absorb heat from the refrigerant for the battery, in the evaporating unit, when the temperature of the refrigerant for the battery is higher than the target temperature of the refrigerant for the battery.
Abstract:
The present disclosure relates to a vehicle cooling circuit for cooling a temperature-increasing device, in particular a battery, by means of a coolant conducted in a coolant circuit, wherein the coolant circuit has a heat exchanger configured as an evaporator via which the coolant circuit is coupled to a cooling medium circuit. In accordance with the present disclosure, the chiller is arranged downstream of the heat exchanger in the direction of flow of the coolant in the coolant circuit. Furthermore a bypass valve is arranged in the coolant line such that the coolant can be conducted fully or partially past the chiller.