Abstract:
An improved vehicle with superior performance and reliability. The vehicle, such as an unmanned aerial vehicle, is capable of vertical takeoff and landing, uses three swashless, variable-pitch vertical lift main rotors with a yaw tail rotor system. Two rear main rotors are optionally tiltrotors, which pivot to increase forward speed without the increased coefficient of drag inherent in tilting the entire vehicle. The three main rotors are positioned in an equilateral triangular configuration, improving balance, increasing load-bearing strength, and making it more compact in size. Movements are controlled through changes in pitch of the rotors, allowing the motors to maintain constant governed rotations per minute, maximizing drivetrain efficiency. Vehicle configurations disclosed herein allow for smaller vehicle size with greater performance than prior art vehicles.
Abstract:
A method for navigating an airborne device relative to a target comprises detecting, at an optical detector on the airborne device, an optical signal generated by one or more LEDs on the target. The method also comprises comparing, by a processor on the airborne device, the detected optical signal with a previously-detected optical signal. The method further comprises determining, by the processor based on the comparison, a change in location of at least one of the airborne device or the target. The method also comprises adjusting a position of the airborne device based on the determined change in location. The method also comprises predicting, by the processor, a movement of the target based on information indicative of at least one of a position, a rotation, an orientation, an acceleration, a velocity, or an altitude of the target, wherein the position of the airborne device is adjusted based on the predicted movement of the target. The method also comprises detecting an obstacle in a flight path associated with the airborne device and adjusting a position of the airborne device is further based, at least in part, on detected obstacle information.
Abstract:
A service unmanned aerial vehicle (UAV) includes a flight system, a status component, a navigation system, and a recovery component. The flight system is for flying the service UAV. The status component is configured to determine that a first UAV is disabled. The navigation system is configured to fly the service UAV to a landing location of the first UAV in response to the status component determining that the first UAV is disabled. The recovery component is configured to recover one or more of a payload of the first UAV and a portion of the first UAV.
Abstract:
A method for cycle counting warehouse inventory using a drone system with a drone carrying a scanning device and a computer with an RF session receiving cycle count tasks. The drone system is placed within a flight range of the drone to a cycle count location and flown to the cycle count location of the cycle count task. The drone acquires the inventory location data and sends it to a warehouse management system through the RF session. Then the drone acquires the inventory data and sends it to a warehouse management system through the RF session. If prompted by the warehouse management system, further data are acquiring such as SKU data, LPN attribute information, and/or quantity information.
Abstract:
In one embodiment, a controller instructs an unmanned aerial vehicle (UAV) docked to a landing perch to perform a pre-flight test operation of a pre-flight test routine. The controller receives sensor data associated with the pre-flight test operation from one or more force sensors of the landing perch, in response to the UAV performing the pre-flight test operation. The controller determines whether the sensor data associated with the pre-flight test operation is within an acceptable range. The controller causes the UAV to launch from the landing perch based in part on a determination that UAV has passed the pre-flight test routine.
Abstract:
This disclosure is directed to varying a speed of one or more motors in an unmanned aerial vehicle (UAV) to reduce unwanted sound (i.e., noise) of the UAV. A UAV may include motors coupled with propellers to provide lift and propulsion to the UAV in various stages of flight, such as while ascending, descending, hovering, or transiting. The motors and propellers may generate noise, which may include a number of noise components such as tonal noise (e.g., a whining noise such as a whistle of a kettle at full boil) and broadband noise (e.g., a complex mixture of sounds of different frequencies, such as the sound of ocean surf). By varying the controls to the motors, such as by varying the speed or revolutions per minute (RPM) of a motor during operation by providing random or pseudo-random RPM variations, the UAV may generate a noise signature with reduced tonal noise.
Abstract:
The present invention provides methods and apparatus for unmanned aerial vehicles (UAVs) with improved reliability. According to one aspect of the invention, interference experienced by onboard sensors from onboard electrical components is reduced. According to another aspect of the invention, user-configuration or assembly of electrical components is minimized to reduce user errors.
Abstract:
A docking system for an unmanned aerial vehicle (UAV) is described that provides a stable landing and take-off area as well as, in some embodiments, refueling and/or data transfer capabilities. The docking system may be portable to provide a ready docking area for a UAV in areas that may not otherwise be suitable for UAV operation. The docking system may include a landing surface, an orientation mechanism that adjusts the landing surface to provide a level landing area, and an alignment mechanism coupled with the landing surface that moves a UAV resting on the landing surface to a predetermined location on the landing surface for automated refueling of the UAV. A latching mechanism may secure the UAV to the landing surface when the UAV is located at the predetermined location.
Abstract:
A helicopter includes a mast, a main rotor, an engine, a radiator, and a body cover. The engine and the radiator are housed in the body cover. The body cover includes a first opening penetrated by the mast, a second opening that is located at a more forward position than the first opening and configured to introduce air to the radiator, and a third opening located at a position that is more forward than the first opening and more rearward than the radiator. The third opening is located at a higher position than the second opening and the radiator.
Abstract:
An unmanned aerial vehicle (“UAV”) is configured with a redundant power generation system on-board the UAV. A redundant power system on-board the UAV can selectively utilize an auxiliary power source during operation and/or flight of the UAV. The power system on-board the UAV may include a battery and at least one auxiliary power source comprising a combustion engine. The combustion engine on-board the UAV may be selectively operated to charge the battery when a charge level of the battery is below a full charge level, and/or to power one or more propeller motors of the UAV.