Abstract:
In an elevator dispatching system controlling the assignment of elevator cars in a building, a method of assigning a multi-deck elevator car includes determining if a crowd exists at a floor in the building; if it is determined that the crowd exists at the floor in the building, determining if two decks of a best elevator car are available; if it is determined that multiple decks of the best elevator car are available, assigning the two available decks of the best elevator to the floor where the crowd exists; wherein, the best elevator car makes one stop for each of the two available decks at the floor where the crowd exists.
Abstract:
A system and method for controlling an elevator group including several elevators and related call devices which controls each elevator in a manner determined by the calls entered and the existing control instructions. When the control system has to decide between two or more control alternatives, a systematic decision analysis is performed by studying the effects resulting from each alternative decision, the effects resulting from each alternative decision, the effects being estimated by simulating by a Monte-Carlo type method the future behavior of the elevator system in the case of each alternative decision. To carry out the simulation, realizations are generated at random for the unknown quantities associated with the current state of the elevator system and for new external future events, and a control decision is made on the basis of the results of the decision analysis.
Abstract:
An elevator control apparatus determines the time required for a call to reach a hall and controls an operation of the car using the obtained estimated travel time. The elevator control apparatus includes an input data conversion unit for converting traffic data, including car position, car direction data, and data regarding car calls and hall calls into data that can be used as input data to a neural network. An estimated travel time operation unit including an input layer is provided for taking in the input data. An output layer is provided for outputting the estimated travel time. An intermediate layer is provided between the input and output layers in which a weighting factor is set. The estimated travel time operation unit comprises a neural network and an output data conversion unit for converting the estimated travel time output from the output layer into data that can be used for a predetermined control operation.
Abstract:
An elevator control system which provide a high transportation efficiency and also provides for equalization of service quality between floors when a large number of passengers located at different floors desire transportation to a common particular floor. Passengers waiting at a lower level floor will first be picked up prior to the elevator moving to the upper level floors so that the passengers at the lower levels will also be able to get on the elevator when there is a large number of passengers who wish to go to a particular floor during a particular time of the day.
Abstract:
An elevator control apparatus determines an estimation of a car's crowdedness based on the a car's crowdedness when the car stops or passes an elevator hall, and controls an operation of the car using the obtained estimated car crowdedness. The elevator control apparatus includes an input data conversion unit for converting traffic data, including a position of the car, a direction of a movement, a car load and calls to be responded, into a form in which it can be used as input data of a neural net, an estimated car crowdedness operation unit including an input layer for taking in the input data, an output layer for outputting the estimated car crowdedness, and an intermediate layer provided between said input and output layers and in which a weighting factor is set, the estimated car crowdedness operation unit constituting the neural net, and an output data conversion unit for converting the estimated car crowdedness output from the output layer into a form in which it can be used for a predetermined control operation.
Abstract:
Elevator group supervisory control method and system for group supervisory control of a plurality of elevators serving a plurality of floors. The method and apparatus of the invention permits the inputting of qualitative requests (guidance), from the user, concerning elevator operation into the group supervisory control system. Qualitative requests concerning elevator operation are set in the form of guidance (or request) targets. The thus set request, targets are converted into control targets for the elevators. Actual group supervisory control is executed using the control targets.
Abstract:
A method and an apparatus for elevator group control, capable of performing the elevator car allocation control with the evaluation characteristics and the control parameters which are most appropriate for a unique situation of each building. In the apparatus, a hall call allocation control to determine a most appropriate one of the elevator cars to respond to a hall call produced at one of the destination floor, is performed by carrying out evaluations in accordance with a given traffic demand of the elevator system; and the control parameters to be utilized in carrying out the evaluations, are determined in accordance with a response resulting from the hall call allocation control and the given traffic demand.
Abstract:
A method of controlling a group of elevators allocates target calls definitively and immediately to the individual elevators for serving the call according to higher rank and lower rank function requirements and these allocations are indicated immediately at the call input floors. A weighted sum corresponding to higher rank function requirements is formed from partial operating costs, this sum is modified into operating costs in the sense of lower rank function requirements by means of variable bonus and penalty point factors and a target call is allocated to the elevator with the lowest operating costs. A target call allocation algorithm with subordinate algorithms for the bonus and penalty point tracking and the costs computation implements this method in a computer. The bonus and penalty point factors are continuously made to follow the traffic volume or the car load group by group or elevator by elevator with the tracking algorithm. The computation of the operating costs takes place in the costs computation algorithm according to a special costs formula, wherein the readjusted bonus and penalty point factors act multiplicatively on a six term partial costs sum.
Abstract:
A method of minimizing car bunching at any traffic flow level allocates closely adjacent stops to a given car which is favored by a variable, readjustable distributor bonus. The estimated lost time costs of all passengers are computed for each elevator and for each hall call, these costs are reduced by a variable distributor bonus concentrating adjacent stops in one car, and a hall call is then allocated for service to that elevator which displays the lowest, reduced estimated lost time costs. In order to assure the function of this method equally at high and low traffic levels, the variable distributor bonus (Bvn) is readjusted to the traffic flow level (Va) which serves as a tracking parameter by means of a tracking function according to the relationship Bvn=Bv.F(Va) and the readjusted variable distributor bonus is defined thereby. The tracking function F(Va) is determined by one of artificial intelligence methods and expert programs. By the dependence of the distributor bonus on traffic flow, the desired small local bunching of elevator cars is an optimum for every traffic level. This method is applicable to a plurality of different allocation criteria, service requests and tracking parameters.
Abstract:
An elevator group management system for managing a plurality of elevators is disclosed wherein the system comprises a plurality of control devices for executing overall assignment processes of the elevators in response to hall calls which take place on particular floors and a plurality of sub tasks, distributedly disposed in the control devices. for calculating times for which the elevators respond to the hall calls. When the control devices receive hall calls at the same time or nearly at the same time, they in parallel activate sub tasks distributedly disposed in the control devices and determine most suitable elevators in response to the hall calls.