Abstract:
According to one embodiment, an elevator group control apparatus performs group control of operations of cars. The apparatus includes a power consumption calculation unit that calculates power consumption when each of the cars is run according to the operation curve on the basis of object data stored in the object data storage unit and an operation curve created by the operation curve creation unit, a distributed waiting controller that sets a car in a waiting state among the cars as a distributed waiting target car and outputs a distributed waiting instruction to move the target car to a distributed waiting floor, and a distribution instruction controller that obtains, from the power consumption calculation unit, power consumption when the distributed waiting target car is moved to the distributed waiting floor and, on the basis of the power consumption, permits or inhibits a distributed waiting instruction output from the distributed waiting controller.
Abstract:
An elevator system (20) includes an elongated member (30, 32, 34) that may sway under certain conditions. An exemplary method of controlling the elevator system (20) includes selectively controlling an elevator car dispatching schedule when a condition exists that is conducive to sway of one of the elongated members (30, 32, 34). The control over the elevator car dispatching schedule controls the time that the elevator car is in a predetermined critical zone while the condition exists such that the time does not exceed a selected amount.
Abstract:
A method of controlling an intelligent destination elevator control system streamlines the control of two or more destination elevators. Operations of a group of destination elevators are monitored to gain experience about how the population is served by the group of destination elevators that serves a building or a building zone. The analysis of measured and/or modeled data and conditions with data about traffic patterns and traffic characteristics enables the system to dynamically control the destination elevators. The system may enhance passengers' experience through efficiency and/or with an improved comfort level.
Abstract:
Elevators (104) in a group elevator system (100) are controlled to facilitate transport of a large item (LI). A destination entry input device receives an input from a passenger (102) indicating that the passenger (102) has a large item (LI) to be transported in the group elevator system (100). The passenger (102) with the large item (LI) is assigned to an elevator (104) having capacity to accommodate the passenger (102) and the large item (LI).
Abstract:
One version of this disclosure includes a system for assigning an elevator car to respond to a call signal wherein a controller is responsible for determining which elevator car will respond to a call signal. This version includes the controller receiving a hall call signal, receiving information regarding the elevator system, determining whether the call assignment can be made in view of a first rule associated with a banned call assignment, and eliminating the rule against banned call assignments when necessary to avoid saturation of the elevator system.
Abstract:
An elevator system and a method are provided for controlling an elevator group. The elevator system includes an elevator group, which includes at least two elevator cars, which elevator cars are fitted to be moved in the elevator hoistway according to the calls allocated by the control of the elevator group. The elevator system includes a power supply arrangement, for adjusting the power needed to move the elevator cars. An energy storage is connected to the power supply arrangement. The energy storage is fitted in the first operating situation to yield energy for use in moving the elevator car, and in the second operating situation to receive energy released by movement of the elevator car. The elevator system includes a determination of the charging status of the energy storage, and the control of the elevator group is fitted to determine the change in energy that would be caused by the movement according to an allocated call of the elevator cars belonging to the elevator group. The control of the elevator group is fitted to allocate a call by favoring in the allocation an elevator car, the determined change in energy caused by the movement of which best meets the allocation criterion.
Abstract:
Provided is an elevator control apparatus in a building in which a plurality of elevators are installed, the apparatus including: a congestion information detecting means (1B1) for detecting a landing area congestion state at each story floor and in each operating direction of all the elevators and generating congestion degree information about the entire building based on the landing area congestion state; a service state detecting means (1B2) for measuring waiting time for landing area call registrations at all the elevators, calculating an average value of the waiting time, and generating service state information about the entire building based on the average value; and a guidance display means (1B3) for displaying the congestion degree information and the service state information.
Abstract:
A method for allocating destination calls in an elevator system, the system including at least one multi-deck elevator, where the passenger gives his/her destination floor by means of a destination call device at the beginning of the journey route, thereby defining the starting point and final point of the passenger's journey route in the elevator system. The method includes the steps of generating possible route alternatives from the starting point to the final point of the journey route, determining a cost function containing at least one travel time term, determining the value of the travel time term corresponding to each route alternative in the cost function, calculating the total cost of each route alternative by using the cost function, allocating for the passenger the route alternative that gives the minimum total cost, and guiding the passenger to a waiting lobby and/or elevator consistent with the route alternative allocated.
Abstract:
The present invention discloses an extension to a prior-art genetic algorithm, with which the routing of elevators based on the calls given in an elevator system is formed. A new type of gene, a so-called run type gene, is connected to the chromosome of the genetic algorithm according to the invention, with which gene the desired speed profile for the elevator trip can be set. In this way e.g. an upper limit can be set for the acceleration or for the maximum travel speed of the elevator. By means of the run type gene a kinetic energy term is included in the optimization. The energy consumed by the system can thus be minimized more effectively by means of the algorithm, because the varying travel speeds of the elevators create more freedom of choice for the chromosomes of the algorithm.
Abstract:
The present invention discloses a method for optimal routing of the elevators in an elevator system in a situation where the supply power received by the system is limited e.g. due to emergency power operation. In the invention, routes are optimized by using a cost function to which has been added a term containing the summed instantaneous power consumed. Power consumption is monitored in real time, and the elevators need a start permission from the control system. A route alternative that exceeds the power limit is penalized in the cost function by a so-called penal term. With the elevator routing obtained as a result, the instantaneous power consumed by the system remains continuously below the set power limit. Some call can thus be postponed to be served later. By the method of the invention, the number of elevators serving passengers in an emergency power situation can be varied dynamically.