Abstract:
A method of making a Lateral-Moving Micromachined Thermal Bimorph which provides the capability of achieving in-plane thermally-induced motion on a microchip, as opposed to the much more common out-of-plane, or vertical, motion seen in many devices. The present invention employs a novel fabrication process to allow the fabrication of a lateral bimorph in a fundamentally planar set of processes. In addition, the invention incorporates special design features that allow the bimorph to maintain material interfaces.
Abstract:
A semiconductor actuator includes a substrate base, a bending structure which is connected to the substrate base and can be deflected at least partially relative to the substrate base. The bending structure has semiconductor compounds on the basis of nitrides of main group III elements and at least two electrical supply contacts which impress an electrical current in or for applying an electrical voltage to the bending structure. At least two of the supply contacts are disposed at a spacing from each other respectively on the bending structure and/or integrated in the latter.
Abstract:
An object of the present invention is to provide a thin and light-weight actuator module structure comprising a multi-layer structure such as a bimorph or unimorph structure that can be formed in an arbitrary shape and deformed in an arbitrary direction, which is high in safety and durability and can be easily fabricated, as well as a method of manufacturing the same.An actuator has a structure such that a striped internal stress distribution is induced within a plane of a bending type actuator of a laminate structure, thereby allowing the actuator to bend so as to constitute a part of a cylindrical shape whose central axis is parallel to the striped direction.
Abstract:
A mechanical structure comprises an element which is moveable by nonmechanical means, such as heat or radiation, between a first state having a first shape and a second state having a second shape different. To this end, the element includes a layer of oriented polymerized liquid crystal which exhibits an anisotropic expansion when subjected to such means. In order to facilitate manufacture the element is positioned on a substrate which has a region of high adhesiveness and a region of low adhesiveness for polymerized liquid crystal. To manufacture such structures a layer of oriented polymerizable liquid crystal is formed on a substrate (201) which is provided with a patterned surface that provides adhesive regions (204) with high adhesiveness to polymerized liquid crystal and nonadhesive regions (203) with low adhesiveness to polymerized liquid crystal. After polymerization, for example a thermal shock is applied which causes the layer of polymerized liquid crystal to delaminate at the non-adhering region while remaining fixed to the adhesive regions. Thus, the method does not require time-consuming under-etching steps.
Abstract:
A process for making microswitches or microvalves, composed of a substrate and used for shifting between a first state of functioning and a second state of functioning by means of a bimetal-effect thermal sensor. The sensor includes a deformable element attached, at opposite ends, to the substrate so that there is a natural deflection without stress with respect to a surface of the substrate opposite it, this natural deflection determining the first state of functioning, the second state of functioning being caused by the thermal sensor which, under the influence of temperature variation, induces a deformation of the deformable element which diminishes the deflection by subjecting it to a compressive force which shifts it in a direction opposite to its natural deflection by buckling.
Abstract:
A MEMS device includes: a first actuator having a first fixed end, including a stacked structure of a first lower electrode, a first piezoelectric film, and a first upper electrode, and being able to be operated by applying voltages to the first lower electrode and the first upper electrode; a second actuator having a second fixed end, being disposed in parallel with the first actuator, including a stacked structure of a second lower electrode, a second piezoelectric film, and a second upper electrode, and being able to be operated by applying voltages to the second lower electrode and the second upper electrode; and an electric circuit element having a first action part connected to the first actuator and a second action part connected to the second actuator.
Abstract:
The Resettable Latching MEMS Temperature Sensor provides the capability of recording external temperature extremes without consuming electrical power. The device incorporates a thermal bimorph, contacts, latches, and actuators for device reset. The device can be designed, hardwired, or programmed to trigger at various temperature levels. The device can be fabricated in a simple micromachining process that allows its size to be miniaturized for embedded and portable applications. During operation, the device consumes no quiescent power. The device can be configured to close a circuit, switch an interrupt signal, or switch some other electrical trigger signal between devices at the time of a temperature extreme being reached, or it can be configured to latch and be polled at some time after the temperature limit has occurred.
Abstract:
An acceleration sensor includes a semiconductor substrate, a first layer formed on the substrate, a first aperture within the first layer, and a beam coupled at a first end to the substrate and suspended above the first layer for a portion of the length thereof. The beam includes a first boss coupled to a lower surface thereof and suspended within the first aperture, and a second boss coupled to an upper surface of the second end of the beam. A second layer is positioned on the first layer over the beam and includes a second aperture within which the second boss is suspended by the beam. Contact surfaces are positioned within the apertures such that acceleration of the substrate exceeding a selected threshold in either direction along a selected axis will cause the beam to flex counter to the direction of acceleration and make contact through one of the bosses with one of the contact surfaces.
Abstract:
An actuator device has a drive section including a plurality of actuators arranged in a plane on a substrate, and a single first plate member to which drive forces from the actuators of the drive section are transmitted. A plurality of spacers are disposed between the first plate member and the substrate, forming m cells. Each of the actuators has a cavity, a vibrating section and a fixed section formed on the substrate. The rigidity of the first plate member is greater than the rigidity of the vibrating section of the actuator.
Abstract:
A bistable microelectromechanical system (MEMS) based system comprises a micromachined beam having a first stable state, in which the beam is substantially stress-free and has a specified non-linear shape, and a second stable state. The curved shape may comprises a simple curve or a compound curve. In embodiments, the boundary conditions for the beam are fixed boundary conditions, bearing boundary conditions, spring boundary conditions, or a combination thereof. The system may further comprise an actuator arranged to move the beam between the first and second stable states and a movable element that is moved between a first position and a second position in accordance with the movement of the beam between the first and second stable states. The actuator may comprise one of a thermal actuator, an electrostatic actuator, a piezoelectric actuator and a magnetic actuator. The actuator may further comprise a thermal impact actuator or a zippering electrostatic actuator.