Abstract:
A passive microfluidic valve includes a first manifold portion having a first chamber; a first inlet fluidly coupled to the first chamber; and a second inlet. The valve also includes a second manifold portion in fluid communication with the first chamber via a channel. The second manifold portion includes a second chamber fluidly coupled to the first chamber and the second inlet. The valve further includes a flexible membrane disposed between the first manifold portion and the second manifold portion and separating the first chamber and the second chamber, the flexible membrane configured to modulate a flow rate of a media flowing between the first inlet and the second inlet in either direction in response to pressure of the media flow.
Abstract:
A system, configured to facilitate processing and detection of nucleic acids, the system comprising a process fluid container and a cartridge comprising: a top layer, a set of sample port-reagent port pairs, a shared fluid port, a vent region, a heating region, and a set of detection chambers; an intermediate substrate, coupled to the top layer comprising a waste chamber; an elastomeric layer, partially situated on the intermediate substrate; and a set of fluidic pathways, each formed by at least a portion of the top layer and a portion of the elastomeric layer, wherein each fluidic pathway is fluidically coupled to a sample port-reagent port pair, the shared fluid port, and a detection chamber, comprises a portion passing through the heating region, and is configured to be occluded upon deformation of the elastomeric layer, to transfer a waste fluid to the waste chamber, and to pass through the vent region.
Abstract:
A microfabricated device is fabricated by depositing a first metal layer on a substrate to provide a first electrode of an electrostatic actuator, depositing a first structural polymer layer over the first metal layer, depositing a second metal layer over said first structural polymer layer to form a second electrode of the electrostatic actuator, depositing an insulating layer over said first structural polymer layer, planarizing the insulating layer, etching the first structural polymer layer through the insulating layer and the second metal layer to undercut the second metal layer, providing additional pre-formed structural polymer layers, at least one of which has been previously patterned, and finally bonding the additional structural layers in the form of a stack over the planarized second insulating layer to one or more microfluidic channels. The technique can also be used to make cross over channels in devices without electrostatic actuators, in which case the metal layers can be omitted.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A fluid flow passage structure and a manufacturing method therefor are provided, in which fluid flow passages can be easily produced employing a simple structure and process, while also being suitable for reducing the weight thereof. Wire members having a predetermined pattern are disposed between a first block member and a second block member. Airtight and fluidtight hermetic fluid flow passages are formed between such members, by forming the first block member, the second block member, and the wire members together as an integral structure.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A MEMS hysteretic thermal actuator may have a plurality of beams disposed over a heating element formed on the surface of the substrate. The plurality of beams may be coupled to a passive beam which is not disposed over the heating element. One of the plurality of beams may be formed in a first plane parallel to the substrate, whereas another of the plurality of beams may be formed in a second plane closer to the surface of the substrate. When the heating element is activated, it heats the plurality of beams such that they move the passive beam in a trajectory that is neither parallel to nor perpendicular to the surface of the substrate. When the beams are cooled, they may move in a different trajectory, approaching the substrate before moving laterally across it to their initial positions. By providing one electrical contact on the distal end of the passive beam and another stationary electrical contact on the substrate surface, the MEMS hysteretic actuator may form a reliable electrical switch that is relatively simple to manufacture and operate.
Abstract:
Plastic microfluidic structures having a substantially rigid diaphragm that actuates between a relaxed state wherein the diaphragm sits against the surface of a substrate and an actuated state wherein the diaphragm is moved away from the substrate. As will be seen from the following description, the microfluidic structures formed with this diaphragm provide easy to manufacture and robust systems, as well readily made components such as valves and pumps.
Abstract:
The present invention refers to a procedure for the manufacture of micro-nanofluidic devices for flow control such as microvalves, micropumps and flow regulators, using a photodefinable polymer and an elastomer as structural materials and to the micro-nanofluidic devices for flow control obtained by said procedure.