Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A method for fabricating multi layer microelectromechanical and microfluidic devices is disclosed. Multi layer microelectromechanical and microfluidic devices are fabricated on a substrate with layers of predetermined weak and strong bond regions where deconstucted layers of devices at or on the weak bond regions. The layers are then peeled and subsequently bonded to produce a multi layer microelectromechanical and microfluidic devices. An arbitrary number of layers can be bonded and stacked to create either microelectromechanical or microfluidic device or a hyrbid type of device. Also disclosed are methods of creating edge interconnects and vias through the substrate to form interconnections between layers and devices thereon.
Abstract:
A micromachined sensor and a process for fabrication and vertical integration of a sensor and circuitry at wafer-level. The process entails processing a first wafer to incompletely define a sensing structure in a first surface thereof, processing a second wafer to define circuitry on a surface thereof, bonding the first and second wafers together, and then etching the first wafer to complete the sensing structure, including the release of a member relative to the second wafer. The first wafer is preferably a silicon-on-insulator (SOI) wafer, and the sensing structure preferably includes a member containing conductive and insulator layers of the SOI wafer. Sets of capacitively coupled elements are preferably formed from a first of the conductive layers to define a symmetric capacitive full-bridge structure.
Abstract:
A method of making a deflectable, free hanging micro structure having at least one hinge member, the method includes the steps of providing a first sacrificial wafer having a single crystalline material constituting material forming the micro structure. A second semiconductor wafer including necessary components for forming the structure in cooperation with the first wafer is provided. Finite areas of a structured bonding material is provided, on one or both of the wafers at selected locations, the finite areas defining points of connection for joining the wafers. The wafers are bonded using heat and optionally pressure. Sacrificial material is etched away from the sacrificial wafer, patterning the top wafer by lithography is performed to define the desired deflectable microstructures having hinges, and subsequently silicon etch to make the structures.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A method for fabricating a vertical integrated circuit is disclosed. Integrated circuits are fabricated on a substrate with layers of predetermined weak and strong bond regions where deconstructed layers of integrated circuits are fabricated at or on the weak bond regions. The layers are then peeled and subsequently bonded to produce a vertical integrated circuit. An arbitrary number of layers can be bonded and stacked in to a separate vertical integrated circuit. Also disclosed are methods of creating edge interconnects and vias through the substrate to form interconnections between layers and devices thereon.
Abstract:
A material having a top portion (active layer) of a thickness and other characteristics optimized for formation of a desired nanostructure, followed by an insulator layer (intermediate or boundary layer) chosen for its electrical insulation and etch resistance from a substrate material formed adjacent to it such that after subsequent processing the substrate may be removed by polishing and etching to leave the nanostructure processed top layer as a thin layer bonded to a 3-d stack or other structure as a thin layer. Thus, the substrate layer has been optimized to have a very high etch rate and to have a large difference in its etch rate and that of the intermediate insulator layer so that it can be selectively etched.
Abstract:
A method for treating a structure, includes: providing an initial structure having at least one main part and a secondary part which have a contact interface with each other and elements constituting at least one zone to be treated capable of varying in thickness substantially perpendicularly to the interface under the effect of a treatment of its material; and applying the treatment to the zone of the initial structure so as to obtain a final structure such that the variation in the thickness of the zone forms an internal space extending between the parts over at least one zone of the interface and substantially parallel to the interface or within at least one of the parts, spaced apart and substantially parallel to the interface. The invention also concerns the structure with internal space resulting from the displacement of one part relative to another part of the structure.
Abstract:
A method for fabrication of single crystal silicon micromechanical resonators using a two-wafer process, including either a Silicon-on-insulator (SOI) or insulating base and resonator wafers, wherein resonator anchors, a capacitive air gap, isolation trenches, and alignment marks are micromachined in an active layer of the base wafer; the active layer of the resonator wafer is bonded directly to the active layer of the base wafer; the handle and dielectric layers of the resonator wafer are removed; viewing windows are opened in the active layer of the resonator wafer; masking the single crystal silicon semiconductor material active layer of the resonator wafer with photoresist material; a single crystal silicon resonator is machined in the active layer of the resonator wafer using silicon dry etch micromachining technology; and the photoresist material is subsequently dry stripped.
Abstract:
A MEMS assembly having a MEMS subassembly sandwiched between and bonded to a cap and a base is provided. The MEMS subassembly includes at least one MEMS device element flexibly connected to the MEMS assembly. The vertical separation between the MEMS device element and an electrode on the base is lithographically defined. Precise control of this critical vertical gap dimension is thereby provided.