Abstract:
An oxygen allotrope generator having a tube with an electrically grounded outer surface and an electrically positive inner surface. A plurality of corona reaction plates are spaced along the interior of the tube, the plates being longitudinally inter-connected by wires and being in electrical connection with the electrically positive inner surface of the tube. An outer jacket encloses the tube and provides a second linear pass for partially ozonated gas to flow in the generator. An alternative embodiment includes external distributed ground connections at the locations of the corona reaction.
Abstract:
In order to generate ozone, which is used for ashing and plasma cleaning, plasma generated in a decompressed chamber is conventionally used. But it is difficult to reduce the production cost of an ozone generation, because facility cost and process cost are expensive in a decompressed process. According to the present invention, ozone is generated by atmospheric pressure plasma CVD using dielectric barrier discharge generated by a plasma head where a plurality of plasma head unit members are installed in parallel to generate plasma by applying electric field or magnetic field via a dielectric member. Stable glow discharge plasma is formed even under atmospheric pressure by dielectric barrier discharge. Then, ozone can be generated under atmospheric pressure, and semiconductor device with low cost can be fabricated.
Abstract:
A gas pipe integrated block includes a plurality of internal pipe paths. The plurality of internal pipe paths are connected to a nitrogen-free ozone generator in which a photocatalytic material for generating ozone is applied to a discharge surface, a controller (an MFC, a gas filter, and an APC), a raw material gas supply port, and an ozone gas output port. Thereby, a raw material gas input pipe path extending from the raw material gas supply port through the APC to the nitrogen-free ozone gas generator, and an ozone gas output pipe path extending from the nitrogen-free ozone generator through the gas filter and the MFC to the ozone gas output port, are formed in an integrated unit.
Abstract:
Aspects of the present invention relate to systems and method for converting ozone and fuel into mechanical energy and waste products. In some embodiments, a super-combustor may be used to provide a combustion engine with an improved ability to combust fuel. Certain embodiments of the invention may provide for an improved spark plug or modified engine having a super-combustor built in.
Abstract:
Disclosed is a method and apparatus for conducting a chemical reaction. The reaction is conducted in a reaction vessel or mixing occurring in at least a partial liquid environment in which reactants are disposed. The reaction is conducted in the presence of cavitation and an electrical current.
Abstract:
A compact, inexpensive, large-capacity ozone generator with increased ease of apparatus maintenance. An ozone power supply includes an n-phase inverter for obtaining an AC voltage having a predetermined frequency and outputting an n-phase AC voltage waveform; n reactors and an n-phase transformer for converting an n-phase AC voltage to a high AC voltage; n high-voltage terminals for outputting the n-phase high AC voltage; and a low-voltage terminal having a common potential. Ozone generator units are electrically divided into n pieces within a discharge chamber. Each ozone generator unit includes n high-voltage electrode terminals and one low-voltage electrode terminal, common to all ozone generator units. Each ozone generator unit supports an n-phase AC discharge to generate ozone.
Abstract:
An ozone generating apparatus is provided which includes a pair of electrodes for producing a discharge by the application of an ac voltage therebetween, and at least one dielectric provided between the pair of electrodes. A source gas containing oxygen is provided into a discharge space in which the discharge is produced to generate ozone by the action of the discharge. A surface lying between at least one of the pair of electrodes and the discharge space and in contact with the discharge has a surface resistivity of 104 Ω to 1011 Ω. The source gas provided into the discharge space includes ultrapure oxygen having a purity of not less than 99.9%.
Abstract:
The present invention offers an operation method of an ozonizer and an ozonizer apparatus to improve ozone gas purity and to achieve long and safety electrolysis operation in such manner that, during normal operation of the ozonizer, ozone gas is generated at the anode in the anode compartment and hydrogen gas is generated at the cathode in the cathode compartment; and only when the ozonizer is stopped and operation is switched to protective current operation during which minute electric current is supplied to protect said anode, oxygen-containing gas is supplied to said cathode compartment after electrolyte and hydrogen gas in said cathode compartment are all drained out, so that said cathode is made function as a gas electrode for oxygen reduction reaction, using said cathode as a reversible electrode with two functions as a gas generation electrode and a gas electrode, thereby during normal operation, ozone is generated efficiently, and during the protective current operation, when safety is a key issue, hydrogen gas is not generated at the cathode and mingling of hydrogen gas into ozone gas generated at the anode is prevented.
Abstract:
An air conditioner device includes a first electrode array and a second electrode array. A mechanism, that cleans the electrode(s) in a first electrode array, includes a length of flexible insulating material that projects from a base of the second electrode array towards the first electrode array. As a user moves the second electrode array up or down within the conditioner housing, the electrode(s) in the first array are frictionally cleaned.
Abstract:
Systems and methods are provided for compensating for variations in line voltages the power an electro-kinetic air transporter and conditioner device. The electro-kinetic air transporter and conditioner device includes a high voltage generator that provides a potential difference between at least one emitter electrode and at least one collector electrode. The high voltage generator is driven by both a DC voltage obtained from an AC voltage source, and a low voltage pulse signal. The DC voltage is stepped down to produce a voltage sense signal indicative of a level of AC voltage source. The voltage sense signal is monitored. At least one of a pulse width, duty cycle and frequency of the low voltage pulse signal is adjusted, based on the monitored voltage sense signal, in order to substantially maintain the potential difference at a desired level.