Abstract:
A SMOKE AND SOOT SUPPRESSANT ADDITIVE FOR LIQUID FUEL COMPRISES AN ETHER AND A GROUP II-A METAL CARBONATE. AN ESPECIALLY SUITABLE ADDITIVE IS BARIUM CARBONATE AND AN ALKYL ETHER OF ETHYLENE GLYCOL, SUCH AS THE DIMETHYL ETHER OF ETHYLENE GLYCOL. GENERALLY THE CARBONATE IS EMPLOYED IN AMOUNTS FROM ABOUT 0.1 TO 1% BY WEIGHT AND THE ETHER IS EMPLOYED IN AMOUNTS FROM 0.1 TO 1% BY WEIGHT.
Abstract:
Embodiments of the invention provide a method of inhibiting precipitation of biodiesel fuel components. The method includes providing a biodiesel fuel composition; providing a copolymer comprising at least first and second polymer units, said first polymer units derived from a carboxylic acid anhydride and said second polymer units derived from an olefin; and blending said copolymer with the biodiesel fuel to form a treated fuel composition. Alternatively, instead of the copolymer, a dialkylene glycol additive can be provided. Embodiments of the invention provide a method of reducing the cold soak filter blocking tendency of a biodiesel fuel composition.
Abstract:
The invention provides new methods for the direct umpolung self-condensation of 5-hydroxymethylfurfural (HMF) by organocatalysis, thereby upgrading the readily available substrate into 5,5′-di(hydroxymethyl) furoin (DHMF). While many efficient catalyst systems have been developed for conversion of plant biomass resources into HMF, the invention now provides methods to convert such nonfood biomass directly into DHMF by a simple process as described herein. The invention also provides highly effective new methods for upgrading other biomass furaldehydes and related compound to liquid fuels. The methods include the organocatalytic self-condensation (umpolung) of biomass furaldehydes into (C8-C12)furoin intermediates, followed by hydrogenation, etherification or esterification into oxygenated biodiesel, or hydrodeoxygenation by metal-acid tandem catalysis into premium hydrocarbon fuels.
Abstract:
The present invention relates to a process for preparing cyclic acetals having general formula (I) wherein Y and Y′, equal to or different from each other, are selected from H and a group OR, R being a linear or branched alkyl containing from 1 to 8 carbon atoms, comprising at least the following phases: (i) providing a reaction mixture comprising at least one vicinal diol having formula (II) Z—CH2-CHOH—CH2OH wherein Z is selected from H and a group OR′, R′ being a linear or branched alkyl containing from 1 to 8 carbon atoms, said mixture being substantially free of aldehydes having general formula R1—CHO, wherein R1 is a linear or branched alkyl containing from 1 to 6 carbon atoms, possibly substituted by an alkoxide group OR111, wherein RIII is an alkyl containing from 1 to 4 carbon atoms; (ii) thermally treating said reaction mixture at a temperature within the range of 100° C.-300° C. in the presence of at least one acid catalyst, obtaining said compound having formula (I). The acetals having formula (I) can be used as fuel components.
Abstract:
A synergistic antimicrobial composition having two components. The first component is a hydroxymethyl-substituted phosphorus compound. The second component is one of the following biocides: hexahydro-1,3,5-tris(2-hydroxyethyl)-s-triazine, 2,6-dimethyl-1,3-dioxan-4-yl acetate or ortho-phenylphenol or its alkali metal or ammonium salts.
Abstract:
The invention relates to liquid hydrocarbons containing cyclic ortho esters as dehydrating dehydrating icing inhibitors and to methods of using the compounds. The liquid hydrocarbons include fuels such aviation fuels, lubricants, hydraulic fluids and hydrocarbon solvents.