Abstract:
Textiles are provided that include fibrous cellulosic materials having an α-cellulose content of less than about 93%, the fibrous materials being spun, woven, knitted, or entangled. The fibrous cellulosic materials can be irradiated with a dose of ionizing radiation that is sufficient to increase the molecular weight of the cellulosic materials without causing significant depolymerization of the cellulosic materials. Methods of treating textiles that include irradiating the textiles are also provided.
Abstract:
A method and apparatus for producing continuous web or sliver of milkweed fibers without the use of conventional carding machines is disclosed. The method generally includes feeding raw materials including milkweed fibers into the apparatus, transferring the milkweed fibers to a sliver collecting net, and producing the slivers on the surface of the sliver collecting net. The slivers can be separated from the sliver collecting net.
Abstract:
Disposable article that include fibers formed from compositions comprising thermoplastic polymers and waxes are disclosed, where the wax is dispersed throughout the thermoplastic polymer.
Abstract:
Flame resistant fabrics are formed by warp and fill yarns having different fiber contents. The fabrics are constructed, for example, by selection of a suitable weaving pattern, such that the body side of the fabric and the face side of the fabric have different properties. The fabrics described herein can be printable and dyeable on both sides of the fabric and are suitable for use in military and industrial garments. Methods of forming flame resistant fabrics, and methods for forming garments from the fabrics, are also described.
Abstract:
According to one aspect of the present disclosure, a mechanism and method is provided to clean and remove or separate cellulose fibers from the source fibrous material without stressing and/or damaging the cellulose fibers. The mechanism includes an agitator that directs the washing fluid in a vertical direction into engagement with the fibrous material to effect maximum cleaning of the cellulose from the remainder of the fibrous material without damaging or stressing the cellulose, thereby providing cellulose that can enhance the strength and other beneficial characteristics of a biocomposite material formed using the cellulose.
Abstract:
The present disclosure provides mint-containing composite cellulose fibers and production methods thereof. A mint-extract crude solution is prepared from a whole mint plant after at least one water extraction process and at least one ethanol extraction process to provide a mint-extract filtrate and mint-extract residues. The mint-extract filtrate is used as the mint-extract crude solution. The mint-extract crude solution is treated to prepare a mint-extract stock solution by at least a quenching process. A viscose spinning solution is prepared by mixing the mint-extract residues with one or more pulps selected from a cotton pulp, a wood pulp, a bamboo pulp, a wool pulp, a linen pulp, a silk pulp, a Tencel pulp, and a Modal pulp. The one or more pulps contain cellulose. A mint-viscose blend is prepared by dynamically mixing the mint-extract stock solution with the viscose spinning solution and then spun into the mint-containing composite cellulose fiber.
Abstract:
A method to manufacture composite fibers of rice husk and charcoal includes the following steps. Heat and grind the rice husk and the charcoal and blend with PET to form first granules and second granules respectively wherein mass fractions of rice husk and charcoal are 15-20 wt %. The mass fraction of rice husk in the first granules and that of the charcoal in the second granules are equal. Blend the first granules and the second granules to form mixed granules. Blend and melt the mixed granules and PET to form a mixture wherein the summation of the mass fractions of rice husk and charcoal in the mixture is 0.2-2 wt %. Form composite fibers from the melted mixture by a procedure of filament making.
Abstract:
This document presents algae-derived antimicrobial fiber substrates, and a method of making the same. The fiber may be a synthetic fiber, but can also be formed as a cellulosic (e.g., cotton). In various implementations, an algae-derived antimicrobial fiber substrate can be made to have identical properties and characteristics of nylon-6 of nylon 6-6 polymer or the like, and yet contain antimicrobial, anti-viral, and/or flame retardant algal derived substances. Any of various species of red algae, brown algae, blue-green algae, and brown seaweed (marine microalgae and/or macroalgae) are known to contain a high level of sulfated polysaccharides with inherent antimicrobial, antiviral, and flame-retardant properties, and can be used as described herein. Additionally disclosed are algae-derived flexible foams, whether open-cell or closed-cell, with inherent antimicrobial, antiviral, and flame resistant properties. Further, a process of manufacturing is presented wherein the process may include one or more of the steps of: harvesting algae-biomass; sufficiently drying the algae biomass; blending the dried algae biomass with a carrier resin and various foaming ingredients; adding an algal-derived antimicrobial compound selected from various natural sulfated polysaccharides present in brown algae, red algae, and/or certain seaweeds (marine microalgae); and adding a sufficient quantity of dried algae biomass to the formulation to adequately create a fire resistant flexible foam material.
Abstract:
A method to treat fibrous materials for use in the formation of a biocomposite material that significantly reduces or eliminates the odors emitted from the fibrous materials is provided. In the method, the fibers or fibrous materials are initially treated to extract the raw fiber from the source plant material and the remove unwanted fractions of the fiber, such as the hemicellulose, lignin, and pectin, among others, leaving only the intact cellulose fibers. These cellulose fibers are then further processed in a second step to remove the odor from the cellulose fibers. The second step includes a combination of a second chemical treatment, dehumidification, and/or a cold plasma modification to render the cellulosic fibers odorless.
Abstract:
An enhanced, co-formed fibrous web structure is disclosed. The web structure may have a co-formed core layer sandwiched between two scrim layers. The core layer may be formed of a blend of cellulose pulp fibers and melt spun filaments. The scrim layers may be formed of melt spun filaments. Filaments of one or both of the scrim layers, and optionally the core layer, may also be meltblown filaments. The core layer may include consolidated masses of cellulose pulp fibers to, for example, enhance texture and cleaning efficacy of a wet wipe made from the structure. The material forming the consolidated masses may be selected and/or processed so as to cause the masses to have reduced visual discernibility relative the surrounding areas of the structure, when the fibrous web structure is wetted. A method for forming the structure, including formation and inclusion of the consolidated masses, is also disclosed.