Abstract:
This disclosure includes systems and methods for actuation of subsea hydraulically actuated devices. Some systems use or include one or more subsea reservoirs, each having a body defining an interior volume configured to contain a sub-ambient internal pressure, the body defining an outlet in fluid communication with the interior volume, and a hydraulic power delivery system including one or more subsea valves configured to selectively allow fluid communication between the outlet of at least one of the reservoir(s) and a first port of the hydraulically actuated device. In some systems, the hydraulic power delivery system includes a rigid sliding member configured to unseal a selectively sealed outlet of at least one of the reservoir(s). In some systems, the subsea valve(s) are configured to alternatively allow fluid communication between the outlet of the at least one of the reservoir(s) and the first or a second port of the hydraulically actuated device.
Abstract:
A shovel may be provided with a swing hydraulic motor, a relief valve provided on the swing hydraulic motor, and an accumulator part that supplies to the swing hydraulic motor a working oil having a pressure lower than a relief pressure of the relief valve. The accumulator part may accumulate the working oil on a braking side of the swing hydraulic motor. The accumulator part may discharge the working oil to an upstream of a main pump.
Abstract:
A valve array includes a reservoir containing a pressurized fluid, a non-return valve and a seat valve that is actuatable so as to allow the fluid to flow out of the reservoir. The seat valve is configured as a pilot control valve connected to the reservoir such that, in an open condition of the seat valve, a smaller amount of the fluid flows out of the reservoir via the seat valve and a larger amount of the fluid flows out of the reservoir via the non-return valve.
Abstract:
A device is described for controlling a hydraulic accumulator of a hydraulic system, for example a vehicle transmission, having a valve device which may connect and disconnect an accumulator-side port of the device to and from a system-side port, the valve device including at least one valve main stage, which is situated hydraulically between the accumulator-side port and the system-side port and to which a pressure prevailing hydraulically at the accumulator-side port is preferably applied by an application means in the opening direction, the valve device also including an electrically actuated control valve which may connect the system-side port to a control port of the valve main stage which acts in the closing direction of the valve main stage and to the accumulator-side port, at least one first throttle being situated between the control valve and the accumulator-side port.
Abstract:
A pyrotechnic pressure accumulator includes an elongated body extending from a first end of a pyrotechnic section to a discharge end of a hydraulic section. A propellant charge located in a gas chamber of the pyrotechnic section, a piston movably disposed the hydraulic section, and a fluid disposed in a hydraulic chamber between the piston and the discharge end, wherein the fluid is exhausted under pressure through a discharge port in response to ignition of the propellant charge.
Abstract:
A piston-in-sleeve accumulator includes a cleaning element positioned on the piston and configured to remove and prevent debris from lodging between the piston and a cylindrical nonpermeable sleeve within which the piston slides. A seal on the piston is positioned to engage an opposing surface in the event of a leak, and thereby prevent the possibility of a complete drainage of pressurized fluid from occurring through the accumulator's fluid port. A position contactor switch is further provided to signal position of the piston within the accumulator.
Abstract:
The invention relates to a fluid power accumulator in which the fluid undergoes a state change as the system is pressurized to store energy. A state change can be a phase change, a chemical reaction, or a combination of these. Generally the state change results from the interaction of a compressible fluid contained in the accumulator with another substance, which can be a fluid or a solid. Preferably, the state change includes the physical adsorption of a fluid by a solid adsorbant. The invention can improve the energy storage density of a fluid power accumulator, allow a given energy storage density to be achieved at a lower maximum pressure, facilitate heat transfer and storage within an accumulator, and/or improve accumulator efficiency by storing energy in a form other than thermal energy, such as in the form of chemical energy.
Abstract:
A hydroaccumulator, in particular a bladder accumulator, includes a pressurized container (1) and a separation element (5) located in the container to separate a gas chamber (7) lying adjacent to an inlet on the gas side from a fluid chamber (9) lying adjacent to an inlet on the fluid side inlet (3), having a fluid connecting sleeve (11) and a valve arrangement located in the connecting sleeve (11). The valve body (17) has a transversal bore (33). The valve body is pretensioned in an open position which allows the passage of fluid and can be displaced into a closed position by a displacement of the separation element (5). The interior surface (15) of the connecting sleeve (11) lies directly against the valve body (17) and guides the displacement of the body between the open and closed positions. The side of the valve body (17′) that faces the separation element (5) is configured as a planar plate extending partially into the fluid chamber (9). The diameter of the valve body (17) is greater than its height, measured in the direction of displacement of the valve body (17). The valve arrangement has a plate-valve construction of small proportions and can be cost-effectively produced.
Abstract:
In a hydraulic cylinder having a shock absorbing function, and capable of stopping as desired by an accumulator disposed within a cylinder rod, the accumulator comprises an accumulator piston that divides the cylinder rod interior into first and second cylinder rod chambers, gas hermetically charged into the second cylinder rod chamber, and an accumulation port that is communicated with the first cylinder rod chamber and flows the operating oil from outside into the first cylinder rod chamber.
Abstract:
A hydraulic accumulator, especially a piston accumulator, includes an accumulator housing (10) with at least one gas chamber (12) and a fluid chamber (14). These chambers are separated from each other by a separating element (16). At least one of these chambers (12, 14) can be filled with a pressure medium or at least partially emptied through at least one valve control unit (26) which has switching valves (28, 30). One switching valve (28) is accommodated in a corresponding valve location (29), and can be moved in the direction of movement of the separating element (16) from an opening position into closing position and vice-versa. Expensive line network between the hydraulic accumulator and the valve control unit is avoided. Sealing or leakage problems, such as are common in a line network, never occur. The valve control unit (26) is accommodated in a valve block (24) which is independent from the housing (10). The valve block (24) has an additional valve location (31) for an additional switching valve (30) for performing another switching task. The valve locations (29, 31) are configured essentially identically and are situated eccentrically in relation to the longitudinal axis (33) of the hydraulic accumulator for modular use of the switching valves (28, 30), which are configured as identical parts.