Abstract:
This detector is intended to detect at least one photon and comprises a dielectric substrate (30), of index nO; a detecting element (32) forming a serpentine, placed on the substrate and generating a signal using the energy of the photon(s); a dielectric grating, formed of lines of index nH, alternating with lines of index nB, avec nH>nO and nH>nB, the grating being placed above the detecting element, the set grating-element presenting a resonant absorption in a given incidence and for a given polarisation; and a superstratum (40) having a refractive index ni, this superstratum being placed above the one-dimensional dielectric grating, nH being furthermore greater than ni.
Abstract:
A portable UV detection apparatus is disclosed. In one embodiment, the UV detection apparatus includes a UV detection device integrated with a skin type measuring device. A controller can be included in the apparatus that is in communication with the skin type measuring device and the UV detection device. The controller can provide information to the user regarding the amount of ultraviolet radiation present in the environment. In an alternative embodiment, the UV detection apparatus includes a UV detection device in conjunction with a light sensor. The light sensor can be configured to activate the UV detection device should light at a particular intensity be present in the environment. The UV detection device as described above can be configured to measure UVA radiation, UVB radiation, and/or UVC radiation.
Abstract:
A system and method for errant laser beam detection are provided for effectively detecting small coating failures in a cost effective and robust manner. In one embodiment, a detection system includes a continuity circuit on a printed circuit board (PCB) having metal (e.g., copper) traces which are designed to burn through if an errant beam strikes them. The traces are sized and patterned appropriately to sense a minimum subaperture size.
Abstract:
Reflectometer, ellipsometer, polarimeter or the like system, which functionally comprise means for providing gas confined in a mini-chamber near the surface of a sample, at a location at which a beam having UV, VUV, IR and NIR wavelengths of electromagnetic radiation is caused to be impinged thereupon.
Abstract:
Light-sensor devices are disclosed for use with a color display such as a CRT, LCD, plasma display, or other type of display. The device includes an arm having a proximal end and a distal end, wherein a light sensor is situated on or near the distal end. A mover, coupled to or near the proximal end, is configured to move the arm to place the sensor selectively at a parked position and at a measurement position. The mover can be electrically energizable to cause motion of the arm. The mover can be or include a motor. Such a light-sensor device can be mounted to a display and thus become a substantially permanent part of the display and can be used with displays that are difficult or inconvenient to keep color-calibrated, or are difficult or impossible to reach for color-calibration.
Abstract:
A photosensor with customizable angular-response characteristics is presented. This photosensor includes a light-modifier located between the photosensor and a target area to be monitored by the photosensor, wherein the light-modifier provides a customizable angular response for light received at the photosensor from the target area.
Abstract:
A light sensor having first and second photodetectors and a current mirror is disclosed. The first photodetector receives a light signal and generates a light current proportional to the light intensity received by the first photodetector and a dark current that is independent of the light intensity. The second photodetector is connected in series with the first photodetector at a first node. The second photodetector has a covering that prevents light from reaching the second photodetector. The second photodetector generates a current equal to the dark current. The first photodetector is connected to a power source and the second photodetector is connected to an output node. The current mirror is connected to the first node and the output node and generates an output current that is proportional to the light current through the output node when the output node is connected to an external circuit.
Abstract:
An apparatus for testing reflectivity of a lens includes an integrating sphere, a light source, a moveable carrier, a detector, and a processor. The integrating sphere has a sampling port for permitting light transfer with a lens to be tested and an exit port configured for transmitting light beams reflected by the lens out from the integrating sphere. The light source generates light beams with a wavelength in a certain range and projects the light beams to the lens. The moveable carrier allows a relative movement between the lens and the integrating sphere. The detector includes a light sensor configured for detecting the light intensity transmitted out from the exit port and transforming it into a reflection comparison signal. The processor is configured for comparing a reference signal of light intensity projected to the lens with the reflection comparison signal to obtain reflectivity of the lens.
Abstract:
The present invention provides a photosensor testing device with a built-in light source and a tester provided with said device, which has a base and an upper cover disposed above the base, characterized in that the upper cover is equipped with at least one light emitting diode (LED) assembly used as a light source for a photosensor under test to undergo testing operation. Therefore, the components such as high intensity discharge lamps and optical processing devices are unnecessary any more, reducing the bulk volume of the testing device and its related cost. Besides, the testing process would be speeded up and the testing accuracy could be improved, as well as the time consumed in replacing the light source would be saved.
Abstract:
A photoelectric converter comprising a resin layer that absorbs infrared light cuts out unnecessary infrared light, while the photoelectric converter has a problem that the resin layer also reduces the transmission of light in the visible range. A photoelectric converter improving the problem comprises a semiconductor substrate (2) on which photoelectric conversion elements are formed, a color filter (8) provided on the semiconductor substrate (2), and a support base (21) bonded to the color filter (8), wherein an interference filter (11) comprised of multiple thin layers of dielectric material laminated together and reflecting infrared light is provided to the support base (21). As a result, light attenuation can be minimized while infrared light is cut, and the usage efficiency of light can be increased. A photoelectric converter adjusted to the luminous efficiency of the human eye can be obtained by adjusting the light transmittance characteristics of the color filter (8) to the luminous efficiency of the human eye.