Abstract:
In a laser-produced plasma (LPP) extreme ultraviolet (EUV) system, laser pulses are used to produce EUV light. To determine the energy of individual laser pulses, a photoelectromagnetic (PEM) detector is calibrated to a power meter using a calibration coefficient. When measuring a unitary laser beam comprising pulses of a single wavelength, the calibration coefficient is calculated based on a burst of the pulses. A combined laser beam has main pulses of a first wavelength alternating with pre-pulses pulses of a second wavelength. To calculate the energy of the main pulses in the combined laser beam, the calibration coefficient calculated for a unitary laser beam of the main pulses is used. To calculate the energy of the pre-pulses in the combined laser beam, a new calibration coefficient is calculated. When the calculated energy values drift beyond a pre-defined threshold, the calibration coefficients are recalculated.
Abstract:
A wireless battery-powered daylight sensor for measuring a total light intensity in a space is operable to transmit wireless signals using a variable transmission rate that is dependent upon the total light intensity in the space. The sensor comprises a photosensitive circuit, a wireless transmitter for transmitting the wireless signals, a controller coupled to the photosensitive circuit and the wireless transmitter, and a battery for powering the photosensitive circuit, the wireless transmitter, and the controller. The photosensitive circuit is operable to generate a light intensity control signal in response to the total light intensity in the space. The controller transmits the wireless signals in response to the light intensity control signal using the variable transmission rate that is dependent upon the total light intensity in the space. The variable transmission rate may be dependent upon an amount of change of the total light intensity in the space. In addition, the variable transmission rate may be further dependent upon a rate of change of the total light intensity in the space.
Abstract:
A radiation failure inspecting method includes acquiring read data when a scanner reads a radiation surface of a radiation unit in a state where a reading surface of the scanner faces the radiation surface of the radiation unit and the radiation unit emits light; acquiring a value corresponding to a radiation energy of the light from the radiation unit by integrating the read data in a direction corresponding to a predetermined direction on the read data; and determining that a radiation failure occurs in the radiation unit when the value corresponding to the radiation energy of the light is equal to or less than a threshold value.
Abstract:
An optical device monitoring system may include a detection unit and a decision unit. The detection unit may be configured to detect a current through an optical device or to detect a voltage across the optical device. The decision unit may be configured to receive the detected current or the detected voltage and to compare the detected current or the detected voltage with normal operating electrical characteristics of the optical device. The decision unit may be further configured to determine optical function failure of the optical device based on the comparison between the detected current or the detected voltage and the normal operating electrical characteristics of the optical device.
Abstract:
There is provided a laser event recorder (100) comprising an image sensor, a processing unit coupled to the image sensor, and a wireless transceiver coupled to the processing unit. The processing unit is configured to identify when the image sensor is illuminated by a laser (16); in response to the identification, record a laser event comprising at least one characteristic feature of the laser (16); and send the recorded laser event to a central server (300) using the wireless transceiver. There is further provided an application software for configuring a smartphone as the laser event recorder, and a laser event recording system comprising the laser event recorder and the central server.
Abstract:
Electronic devices may include light sensors. A light sensor may be an ambient light sensor that is mounted adjacent to an aperture in an opaque structure. An ambient light sensor may include active light sensor elements located adjacent to the aperture and inactive light sensor elements located adjacent to the opaque structure. Signal processing circuitry may be interposed between the light sensor elements and a summing circuit that sums light signals from the light sensor elements to form an ambient light signal. The signal processing circuitry may include a switch and an amplifier associated with each light sensor element. The switch associated with each element may be used to selectively activate or inactivate that element. The amplifier associated with each element may be used to amplify the light signal from that element by a gain factor that depends on the location of that element with respect to the aperture.
Abstract:
The luminance measuring apparatus for measuring the luminance of a road has an image pickup unit for picking up an image of the road, an input unit for inputting information concerning the road as an imaging target, and a luminance measuring unit for defining a luminance measurement target field A on the basis of the information input from the input unit and measuring the luminance within the luminance measurement target field A on the basis of an image picked up by the image pickup unit. The luminance measuring unit divides the luminance measurement target field A of the pickup image into a grid having a predetermined number of lattice intersection points MP in an equivalent of plan view, and allocates measurement points of luminance to the respective lattice intersection points MP.
Abstract:
Apparatuses, methods, apparatuses and systems for standalone sensor unit are disclosed. For an embodiment, the standalone sensor unit includes a plurality of sensors and a controller. The controller is operative to detect a presence of a mobile unit, wherein detecting the presence of the mobile unit comprises the controller being operative to sense motion with a motion sensor, and sense a strobe of light, wherein the sensed motion and the sensed strobe of light occur within a predetermined time of each other, and receive a configuration setting from the mobile unit within a window of time after presence of the mobile unit has been detected.
Abstract:
Described are optical sensing systems. The systems may perform reliably in explosive environments and provide eye protection should breakage of an optical fiber be detected. Sensors of the systems additionally may be self-managing, acquiring and transmitting sensed data as available electrical power permits.
Abstract:
Technology for detecting a change in a configuration position of one or more elements in an illumination system is described. A light source generates an illumination signal, and an element of the system directs a portion of the light of the signal back to a light detector. In one example, the portion of light is reflected back to the light detector. By monitoring an output signal of the light detector based on the directed light, control circuitry can detect that a position of an element of the system has changed. In one example, an off-the-shelf integrated circuit laser diode package including a monitor photodiode can be used with a reflective element. In one example, the reflective element is a tilted optical element. Changes can be detected in the configuration of one or more optical elements of the illumination system which are outside the laser diode package.