Abstract:
An electronic system includes a control circuit to provide a binary control signal alternating between a first binary state during first phases and a second binary state during second phases; a screen controlled by the control signal, the screen emitting light during each first phase, and to not emit any light during each second phase; a light sensor under the screen or along the edge of the screen, and providing a measurement signal representative of a quantity of light received by the sensor during a measurement phase or a plurality of consecutive measurement phases; and a synchronization device to synchronize each measurement phase with a second phase.
Abstract:
Flash light-generating methods and systems are provided, which, in one aspect, include: obtaining one or more measurements of existing light on or around an illumination target; ascertaining a desired color attribute(s) for a combined light to be provided on the illumination target, the combined light including the existing light and a flash light to be generated; determining a flash light spectral power distribution of illumination which achieves a combined light spectral power distribution of illumination on the illumination target having the desired color attribute(s), the determining using, in part, the measurement(s) of existing light, and the desired color attribute(s) for the combined light; and generating the flash light with the determined flash light spectral power distribution of illumination to provide the combined light on the illumination target having the combined light spectral power distribution of illumination with the desired color attribute(s).
Abstract:
A method for automated dispensing of a fluid. The method includes providing a light pulse to a location proximate a dispensing outlet from which said fluid will be dispensed, sensing a light received from that location, where the sensed light includes at least one of an ambient light or a reflection of said light pulse, generating a signal corresponding to the sensed light, generating a transistor-transistor logic (TTL) signal if the reflection of the light pulse is determined and pumping a fluid to the dispenser outlet in response to said TTL signal.
Abstract:
A spectral feature of a pulsed light beam produced by an optical source is estimated by modifying the wavelength of the pulsed light beam based on a predefined repeating pattern having a pattern period including a plurality of steps, the modification including shifting the wavelength of the pulsed light beam by a wavelength offset from a baseline wavelength for each step in the pattern period; measuring the wavelength of the light beam for each step in the pattern period as the wavelength is modified across the pattern; and estimating a spectral feature of the pulsed light beam over an evaluation window that includes all of the steps within the pattern period based at least in part on the measured wavelength of the light beam for each step in the pattern period.
Abstract:
For detecting at least one pulsed light source, light emitted by the pulsed light source being detected by a detector unit, a method includes detecting a first image parameter of the light of the light source using a first exposure time; detecting at least a second image parameter of the light of the light source using an at least second exposure time, the first exposure time and the at least second exposure time being different, and the detector unit being set to a predetermined value between the detection of the first image parameter and the detection of the at least second image parameter, the first image parameter and the at least second image parameter chronologically consecutively representing the same spatial location; and evaluating the at least second image parameter to detect a pulsed light source when at least the at least second image parameter meets a predetermined criterion.
Abstract:
PICA test circuits are shown that include a first transistor and a second transistor laid out drain-to-drain, such that a gap between respective drain regions of the first and second transistors has a minimum size allowed by a given fabrication technology.
Abstract:
PICA test circuits are shown that include a first transistor and a second transistor laid out drain-to-drain, such that a gap between respective drain regions of the first and second transistors has a minimum size allowed by a given fabrication technology; a first NOR gate having an output connected to the drain region of the first transistor and accepting a first select signal and an input signal; and a second NOR gate having an output connected to the drain region of the second transistor and accepting a second select signal and the input signal. One of said NOR gates biases the connected transistor's drain region, according to the select signal of said NOR gate, to inhibit an optical emission when said connected transistor is triggered.
Abstract:
A radiant-temperature measurement device includes a time-based data measurement unit for acquiring, based on an intensity of first light, a first data value during a first measuring interval in a first intensity duration, and a second data value during a second measuring interval in a second intensity duration. The time-based data measurement unit is also for acquiring, based on an intensity of second light, a third data value in a first wavelength band, and a fourth data value in a second wavelength band, during the first measuring interval, and a fifth data value in the first wavelength band, and a sixth data value in the second wavelength band, during the second measuring interval. The radiant-temperature measurement device also includes a temperature calculation unit for calculating, based on the first, second, third, fourth, fifth, and sixth data values, a temperature of a light source at its light-emitting end.
Abstract:
A lithographic apparatus includes an illumination system configured to condition a radiation beam. The illumination system includes a pulsed source of radiation and a controller to control an output of the pulsed source of radiation. The controller includes a dose sensor to measure a dose of a pulse of the source of radiation. The dose sensor includes a dose sensor output to provide a dose signal representative of the measured dose. An integrator unit is connected to the dose sensor output. The integrator unit integrates the dose signal at least twice, an output of the integrator unit provides an integrator output signal including the at least twice integrated dose signal. The output of the integrator unit drives a driving input of the source of radiation with the integrator output signal.
Abstract:
This invention provides an exposure apparatus capable of properly reading an electrical signal from a photoelectric sensor by using the time interval between emission pulses even at a high emission frequency of the light source. A photoelectric sensor attached to an exposure apparatus which exposes a substrate to a pulse beam emitted by a light source for generating a pulse beam has a plurality of photoelectric converters (29-1-29-n). The photoelectric converters (29-1-29-n) are divided into a plurality of blocks. While charges are read from each block by using one time interval between pulse beams, charges in all the photoelectric converters (29-1-29-n) are read by using a plurality of time intervals between pulse beams.