Abstract:
A multitouch-capable touchscreen is realized in that a large number of pressure sensors are attached under a flexible surface and thus both the pressure distribution and also the deformation of the surface is measured. Local pressure maxima occur due to the flexibility of the surface material with associated deformation on contact. As several local pressure maxima can exist, it is thus also possible to identify a plurality of contacts simultaneously. It is possible from the strength of pressure and pressure distribution to determine the force that is used for pressing such that this information can also be used in the user interface. Such sensors can be produced very efficiently and inexpensively by printing an ink that changes its resistance under pressure onto PCB tracks designed as sensor surfaces. The PCB tracks and the sensor surfaces can also be printed out using an ink with as low a resistance as possible.
Abstract:
A pressure sensor grid can comprise a plurality of bottom wires, arranged substantially parallel to each other and overlaid by a plurality of top wires arranged substantially perpendicular to the bottom wires. Each intersection of the top and bottom wires includes a pressure sensor. The sensor comprises a switching junction situated between the bottom wire and the top wire and a conducting channel extending through the switching junction from the bottom wire to the top wire. Pressure applied to the top wire causes an increase in conductance between the bottom wire and the top wire.
Abstract:
A resistive multi-point touch device and method is disclosed. A plurality of wires intersect each other to form a plurality of intersecting regions. The intersecting wires are separated from each other by a plurality of insulating particles. First, suppressed intersecting regions are sensed, and then contact points on the suppressed intersecting regions are sensed based on the suppressed intersecting regions. Sensing of the suppressed intersecting regions is performed by first sensing suppressed wires, and then determining possibly suppressed intersecting regions based on the suppressed wires, and sensing suppressed intersecting regions based on these possibly suppressed intersecting regions.
Abstract:
The invention relates to a sensor as a built-in component of an object, especially an elastic object, the sensor comprising a polymer material containing electroconductive additives according to the invention and thereby acting as an expansion sensor (2), in that it measures the static and dynamic expansions of the object in relation to the acting forces and also monitors the changes of the polymer material generated by the static and dynamic expansions of the object over time. The invention also relates to a sensor arrangement (1) acting especially in combination with the following components: an expansion sensor (2), a fixed resistor (3), an analog/digital converter (4), a micro-controller comprising a memory (5), a radio interface (6), a controlled current/voltage source (7), an energy supply (8), a coupling coil (9), and a receiving unit (10).
Abstract:
A tactile sensor includes a substrate, electrodes arranged on the substrate, a conductive resistor membrane spaced apart from the electrodes by a predetermined distance, and an elastic member spaced apart from the resistor membrane by a predetermined distance.
Abstract:
A sensor element capable of appropriately detecting an external force operating three-dimensionally is provided. The sensor element has an electrically conductive elastic member whose electrical property changes when compressed or expanded by an external force, and a plurality of electrode elements, which are capable of receiving power supply, for measuring electric properties from outside. The plurality of electrode elements are grouped into one or more sets, each having a predetermined number of electrode elements, for measuring electrical properties, and the electrode elements constituting a set are arranged three-dimensionally inside and on the surface of the conductive elastic member.
Abstract:
A sensor is provided, which includes a plurality of conducting elements spaced apart from each other and at least one deformable electrolyte bridge contacting each of the conducting elements at one or more contact points having an aggregate contact area. Upon formation of an ionic circuit between two of the conducting elements, a first resistivity between the two conducting element exists. Upon application of a compressive force on the at least one deformable electrolyte bridge directed toward at least one of the conducting elements, the aggregate contact area increases such that a second resistivity between the two conducting elements exists.
Abstract:
The invention relates to a method for determining the electrical resistance of an electrical supply lead to sensor elements and concerns a sensor arrangement. The sensor elements are interconnected to form a sensor arrangement, and the electrical total resistance of the supply lead to the sensor elements is determined by effecting a measurement involving an electrical component. The electrical total resistance of the supply lead to the sensor elements is compared to a reference value, whereby the reference value is the value of the electrical total resistance of a reference component of the circuit arrangement and of its electrical leads. The reference value is also determined by effecting a measurement.
Abstract:
According to one embodiment in the invention, a pressure sensor includes: an inner flexible insulation substrate; a plurality of inner electrodes arranged on the inner flexible insulation substrate at a certain distance from each other; an outer flexible insulation substrate disposed along an outer face of the inner flexible insulating substrate so that the inner electrodes are disposed between the inner flexible insulation substrate and the outer flexible insulation substrate; a plurality of outer electrodes disposed on an outer face of the outer flexible insulation substrate at a given distance from each other; and an elastic cover covering the outer face of the outer flexible insulating substrate with the outer electrodes, wherein respective distances between the inner electrodes and the outer electrodes are variable by a pressure applied externally to the elastic cover.
Abstract:
A cable-type load sensor comprises two conductors arranged in parallel; and an elastic cladding layer with which surroundings of two conductors are covered. Each of two conductors comprises at least one of a nickel chromium system alloy, an iron nickel system alloy, a copper nickel system alloy, and a nickel titanium system alloy.