Abstract:
An optical apparatus consisting of a laser for producing a coherent polarized beam of electromagnetic radiation of a preselected wavelength. A substrate of silicon has a first transparent cover layer for receiving the polarized beam substantially normally incident thereto, and a second transparent guide layer for receiving the polarized beam from the first layer and for supporting at least one resonant mode. The first and second layers have a preselected index of refraction and a grating is interposed between them, having a grating period less than half the preselected wavelength. The layers and grating interact to produce a standing wave resonance by Bragg reflection. A control obtains a resonance wavelength in the guide layer equal to the predetermined radiation wavelength and thereby high reflectance to modulate the polarized beam. The grating can be optimized for angular bandwidth by controlling the grating's Fourier components either in a single layer or in two grating layers which can also include a termination.
Abstract:
An optical modulator is disclosed. The modulator is based upon an ARROW waveguide, consisting of a substrate, a lower cladding, an interference layer, and a core layer. An electronic element is formed in the structure to control the free-carrier concentration in the interference layer. The light is coupled by grating into the interference layer, where the free-carrier concentration is controlled by the element, which in turn controls the modulation of the light in the interference layer before it is coupled back to the core layer.
Abstract:
A light beam scanning system comprises a wave guide formed of a material allowing propagation of surface acoustic waves therethrough, and a means for generating the surface acoustic waves in the wave guide so that they advance along an optical path of light incident upon the wave guide, and a drive circuit for periodically applying a pulsewise voltage to the surface acoustic wave generating means. The wave guided inside of the wave guide is emitted out of the wave guide at the section where the surface acoustic waves are present by a coupling action of a grating generated by the surface acoustic waves with the guided wave.
Abstract:
A rapid laser scanning system utilizing an optical grating coupler (OGC) reby the angle at which an incident laser beam is outputted therefrom may be varied by the imposition of an electric field on a thin film underlying the coupler at right angles to the path of the laser beam through the thin film.
Abstract:
A hybrid package chip and an optical transmitter includes a first sub-chip including a first waveguide and at least one first electrode, and a second sub-chip including a second waveguide and at least one second electrode. The first waveguide is optically coupled to the second waveguide. A first electrode of the first sub-chip and a corresponding second electrode of the second sub-chip are electrically connected to one another by means of a first conductive structure, so as to receive a modulation electrical signal. The first sub-chip is configured to receive external input light and output the light by means of the first waveguide. The at least one first electrode modulates the input light so as to output the modulated light. The second waveguide receives a portion of light from the first sub-chip through coupling.
Abstract:
An optical modulator includes a carrier and a waveguide disposed on the carrier. The waveguide includes a first optical coupling region, a second optical coupling region, first regions, and second regions. The first optical coupling region is doped with first dopants. The second optical coupling region abuts the first optical coupling region and is doped with second dopants. The first dopants and the second dopants are of different conductivity type. The first regions are doped with the first dopants and are arrange adjacent to the first optical coupling region. The first regions have respective increasing doping concentrations as distances of the first regions increase from the first optical coupling region. The second regions are doped with the second dopants and are arranged adjacent to the second optical coupling region. The second regions have respective increasing doping concentrations as distances of the second regions increase from the second optical coupling region.
Abstract:
A high contrast grating optical modulation includes an optical modulator at a front surface of a substrate to modulate received light. The high contrast grating optical modulation further includes a high contrast grating (HCG) lens adjacent to a back surface of the substrate opposite to the front surface to focus incident light onto the optical modulator. The substrate is transparent to operational wavelengths of the focused incident light and the modulated light.
Abstract:
An eye tracker having a waveguide for propagating illumination light towards an eye and propagating image light reflected from at least one surface of an eye, a light source optically coupled to the waveguide, and a detector optically coupled to the waveguide. Disposed in the waveguide is at least one grating lamina for deflecting the illumination light towards the eye along a first waveguide path and deflecting the image light towards the detector along a second waveguide path.
Abstract:
A plasmonic phase modulator and a method of phase modulation employ modulation of surface plasmons. The plasmonic phase modulator includes a semiconductor substrate configured to provide a surface charge that forms a plasmonic channel at the substrate surface. The modulator further includes an electrode and an insulator between the electrode and the semiconductor substrate. The electrode is configured to provide an electric field that influences the surface charge. The electric field includes a bias field component and a modulation field component. The surface plasmon is supported within the plasmonic channel at an interface between the semiconductor substrate surface and the insulator. A phase of the surface plasmon in the plasmonic channel is modulated by changes in the electric field. The method includes propagating the surface plasmon in the plasmonic channel and varying the modulation field component to modulate the phase of the propagating surface plasmon.
Abstract:
A photonic integrated circuit (PIC) is described. This PIC includes a grating coupler for surface-normal coupling that has an alternating pattern of grating teeth and grating trenches, where the grating trenches are filled with an electro-optical material. By applying an electric potential to the grating teeth, the index of refraction of the electro-optical material can be modified.