Abstract:
One or more embodiments provide for a composition that includes (i) organic material that is conductive or semi-conductive, and (ii) conductor and/or semiconductor particles other than the organic material. The organic material and the conductor and/or semiconductor particles are combined to provide the composition with a characteristic of being (i) dielectric in absence of a voltage that exceeds a characteristic voltage level, and (ii) conductive with application of the voltage exceeding the characteristic voltage level.
Abstract:
A method and apparatus including an interconnect structure having a surface, a plurality of nanotubes disposed adjacent to the surface, and a metallic layer disposed adjacent to the surface and substantially including the nanotubes. An assembly may include a first embodiment of an apparatus as described, and may further include a second such embodiment at least one of physically and electrically coupled to the first embodiment.
Abstract:
A thermal management circuit material comprises an electrically conductive layer; a dielectric layer comprising a polymer matrix and a thermally conductive, electrically non-conductive particulate filler, wherein the dielectric layer is disposed on and in at least partial contact with the electrically conductive layer, and wherein the circuit material has a thermal conductivity of greater than or equal to about 1 watt per meter-degree Kelvin.
Abstract:
An embodiment of the present invention is an interconnect technique. Carbon nanotubes (CNTs) are prepared. A CNT-solder composite paste is formed containing the CNTs and solder with a pre-defined volume fraction.
Abstract:
A method and apparatus including an interconnect structure having a surface, a plurality of nanotubes disposed adjacent to the surface, and a metallic layer disposed adjacent to the surface and substantially including the nanotubes. An assembly may include a first embodiment of an apparatus as described, and may further include a second such embodiment at least one of physically and electrically coupled to the first embodiment.
Abstract:
Embodiments of substrate core polymer nanocomposite with nanoparticles and randomly oriented nanotubes and method for making the substrate core are generally described herein. Other embodiments may be described and claimed. In some embodiments, a nanotube suspension is combined with nanoparticle-impregnated polymer.
Abstract:
The present invention generally relates to circuits on the nanotechnology scale. Specifically, it is directed to methods of fabricating carbon nanotube-based (i.e., CNT-based) circuits. The method involves providing a mixture of carbon nanotubes that is substantially disaggregated and patterning carbon nanotubes through the use of electrostatic forces. Carbon nanotubes in the mixture are typically disaggregated through the introduction of positive charge on the individual nanotubes. The patterning of the carbon nanotubes is typically accomplished using electrostatic attraction between pre-formed metal lines and the charged carbon nanotubes.
Abstract:
An anisotropic conductive film (10) is used for bonding a semiconductor component to a circuit board. The anisotropic conductive film includes an insulative adhesive film (12) and a plurality of nano-scaled conductive particles (14). The nano-scaled conductive particles are dispersed in the insulative adhesive film. The nano-scaled conductive particles are a nanotubes each containing metal particles and polyaniline therein. Because the sizes of the nano-scaled conductive particle are very small, more of the nano-scaled conductive particles can be compressed between two corresponding contacts of the semiconductor component and the circuit board. The interface area between the two corresponding contacts is correspondingly enlarged. In addition, the polyaniline both in the opening and inside of the nanotubes also has a more favorable viscosity. The bonding effect between a semiconductor component and a circuit board is improved.
Abstract:
Disclosed is a wiring connection structure comprising a wiring on which a preferable carbon nanotube can be formed, and a method for forming the same. On a lower layer Cu wiring, Mo is deposited to form a connection layer. On this connection layer, a carbon nanotube is grown using a CVD method. When the connection layer composed of Mo is formed, the following advantages can be obtained. Even when heat is applied during the CVD for growing the carbon nanotube, thermal diffusion of Cu in the lower layer Cu wiring is suppressed so that activity of the catalyst metal can be kept. Further, since the contact resistance between Mo and the carbon nanotube is low, a low resistance connection between the lower layer Cu wiring and the carbon nanotube can be secured and at the same time, a preferable carbon nanotube can be formed.
Abstract:
A self-assembled nanometer conductive bump and a method for fabricating the bump. In the method, a multiplicity of carbon nanotubes that are coated at two ends with chemically functional groups is first provided. A substrate that is equipped with at least one bond pad on a surface is then positioned juxtaposed to the carbon nanotubes for forming a bond between the carbon nanotubes and the metal pads facilitated by a chemical affinity existed between the functional groups and the metal pad.